
(Guest Lecture) Fully Homomorphic Encryption
Keewoo Lee1 (UC Berkeley) 1 keewoole@gmail.com

April 29, 2025

In this note, we discuss the construction of a secret-key variant of the
GSW2 somewhat homomorphic encryption scheme. 2 Craig Gentry, Amit Sahai, and Brent

Waters. Homomorphic encryption from
learning with errors: Conceptually-
simpler, asymptotically-faster, attribute-
based. In CRYPTO, 2013

GSW Scheme

In the same spirit as previous SHE constructions3,4, we will begin 3 Craig Gentry. Fully homomorphic
encryption using ideal lattices. In
STOC, 2009

4 Marten van Dijk, Craig Gentry, Shai
Halevi, and Vinod Vaikuntanathan.
Fully homomorphic encryption over the
integers. In EUROCRYPT, 2010

with a ring homomorphism and introduce noise to achieve security,
with the goal of constructing a somewhat ring-homomorphic encryp-
tion. Any somewhat ring-homomorphic encryption scheme suffices
for our purpose, since the NAND gate can be simulated over any
ring with unity using expression 1− xy for x, y ∈ {0, 1}. (Note that
the NAND gate alone forms a functionally complete5 operator set.) 5 https://en.wikipedia.org/wiki/

Functional_completeness

Ring Homomorphism from Eigenvalues

The starting point of the GSW scheme is a ring homomorphism de-
fined by eigenvalues. More precisely, consider a scheme where a We omit the details of the encryption

algorithm, as this is just a thought
experiment. The scheme is not secure
against any adversary who has taken
Linear Algebra 101.

ciphertext encrypting a message µ ∈ Zq under a secret key v ∈ Zm
q is

a matrix C ∈ Zm×m
q satisfying:

Cv = µv.

That is, the message µ is the eigenvalue of the ciphertext C corre-
sponding to the (secret) eigenvector v. To verify that this is indeed a
ring homomorphism, consider two ciphertexts C1 and C2 such that
C1v = µ1v and C2v = µ2v. We define the ring operations on cipher-
texts naturally by setting C1 ⊞ C2 := C1 + C2 and C1 ⊠ C2 := C1C2. These are simply matrix addition and

matrix multiplication.Then, the scheme indeed forms a ring homomorphism, as shown
below.

(C1 + C2)v = C1v + C2v = µ1v + µ2v = (µ1 + µ2)v

(C1C2)v = C1(C2v) = C1(µ2v) = µ2(C1v) = (µ1µ2)v

Noise to the Rescue

Of course, the previous scheme is not secure against any adversary
with a basic understanding of linear algebra. We address this by
modifying it into a noisy version, while carefully ensuring that it
remains somewhat homomorphic. That is, we consider a scheme in The tension between structure and

hardness, and between functionality
and privacy.

Someone might find this abrupt—why
suddenly consider a noisy variant?
However, this is a well-established
approach in constructing FHE. Recall
also the LPN problem.

which a ciphertext encrypting a message µ ∈ Zq under a secret key

https://en.wikipedia.org/wiki/Functional_completeness
https://en.wikipedia.org/wiki/Functional_completeness

(guest lecture) fully homomorphic encryption 2

v ∈ Zm
q is a matrix C ∈ Zm×m

q satisfying the following condition for
some small noise e ∈ Zm

q .

Cv = µv + e

Here, small means that it has a small norm if we take {−⌈q/2⌉ +
1, . . . , ⌊q/2⌋} as the representatives of Zq.

This noisy variant raises several questions that need to be ad-
dressed.

1. Is it still (somewhat) homomorphic?

2. How can we decrypt in the presence of noise?

3. How can we encrypt?

4. Is this scheme secure?

We will answer each of these questions in turn.

Homomorphism. Let’s begin by examining whether this scheme
is (somewhat) homomorphic even in the presence of noise. Let
C1v = µ1v + e1 and C2v = µ2v + e2. We define the ring opera-
tions on ciphertexts naturally, as before. First, let’s check addition.
The following equations show that C1 ⊞ C2 is a ciphertext encrypting
µ1 + µ2, but with noise e1 + e2.

(C1 + C2)v = C1v + C2v

= (µ1v + e1) + (µ2v + e2)

= (µ1 + µ2)v + (e1 + e2)

Is e1 + e2 small when e1 and e2 are small? Yes, if e1 and e2 are suffi-
ciently small, then e1 + e2 should also remain small. By starting with
ciphertexts that have smaller noise—something that can be controlled
during the encryption procedure—the resulting ciphertext after addi-
tion will have small noise. Of course, if we keep adding ciphertexts,
eventually the noise will grow too large, but this is acceptable since
we are only aiming for somewhat homomorphism.

Next, multiplication. The following equations show that C1 ⊠ C2 is
a ciphertext encrypting µ1µ2, but with noise e× = µ2e1 + C1e2. Notice asymmetry here. Such asymme-

try is exploited in certain results, such
as:

Zvika Brakerski and Vinod Vaikun-
tanathan. Lattice-based FHE as secure
as PKE. In ITCS, 2014

(C1C2)v = C1(C2v)

= C1(µ2v + e2)

= µ2(C1v) + C1e2

= µ2(µ1v + e1) + C1e2

= (µ1µ2)v + (µ2e1 + C1e2)

(guest lecture) fully homomorphic encryption 3

Is e× small when e1 and e2 are small? Not necessarily. If the cipher-
text C1 has large components, then e× could also be large. Similarly,
if the message µ2 is large, then e× could become large as well.

To address this, we need to restrict both the message space and
the ciphertext space to consist only of small elements. The message
space is not a major concern for us; since our blueprint only requires
a homomorphic NAND gate, we can restrict the message space to
{0, 1}. However, this can be a significant

drawback from a practical perspective.
Implementing every homomorphic
circuit solely with NAND gates is
cumbersome and leads to inefficiency.

Decryption. How can we decrypt in the presence of noise? This is
now easy to answer because we restricted the message space to be
{0, 1}. The product of a ciphertext C and its corresponding secret
eigenvector v, given by Cv = µv + e, would be v + e if µ = 1, and
e if µ = 0. Since e is a small noise vector, if v has at least one large
component—which will be ensured by our design—then these two
cases can be easily distinguished by checking whether Cv has at least
one large component or not.

Learning with Errors

To address the remaining questions, we have to review some related
concepts. First, we introduce the Learning with Errors (LWE) prob-
lem6, on which the security of the GSW scheme is based. The prob- 6 Oded Regev. On lattices, learning

with errors, random linear codes, and
cryptography. In STOC, 2005

lem LWEn,q,χ,m is to distinguish between the following two distribu-
tions, defined with respect to a uniformly random secret s← Zn

q .

1. (A, b) where A← Zm×n
q , e← χm, and b← As + e

2. (A, b) where A← Zm×n
q and b← Zm

q

Note that LWEn,q,χ,m is information-theoretically impossible to solve
when χ is the uniform distribution over Zq and extremely easy to
solve when χ outputs constantly zero (by Gaussian elimination).
We are interested in the intermediate case, where χ is a small noise
distribution. In this note, you can think of χ as a uniform distribution
over [−B, B], where B≪ q/2.

Gadget Decomposition

We now introduce gadget decomposition and related notations, a useful
tool for describing the GSW scheme and, more generally, lattice-
based cryptosystems. At a high level, gadget decomposition al-
lows us to transform a matrix with large components into a higher-
dimensional matrix with small components, while ensuring that it
can later be recomposed using only linear operations. In this note,
you can think of it simply as a fancy term for bit-decomposition.

(guest lecture) fully homomorphic encryption 4

To be precise, fix a gadget vector g ∈ Zk
q. A typical choice, which

aligns with the bit-decomposition setting we will use in this note, is
the following, with k = ⌈log q⌉.

g =


1
2
22

...
2k−1


We first define the gadget composition function g with respect to g

as follows.

g : Zn×km
q → Zn×m

q

M 7→ MGm

Here, Gm is the gadget matrix, defined as Im ⊗ g, where ⊗ denotes
the tensor product (also known as the Kronecker product). We will https://en.wikipedia.org/wiki/

Kronecker_productomit the subscript when the context makes it clear. In our case, g is
simply the bit-composition function.

We call g−1 : Zn×m
q → Zn×km

q a gadget decomposition algorithm with
respect to g if the followings hold.

1. For any M, we have
g ◦ g−1(M) = M.

2. The components of the outputs of g−1 are all small.

In this note, we will simply use bit-decomposition, which outputs a
binary matrix that satisfies the above conditions.

Note that g−1 is only a right inverse of g and not a left inverse.

That is, g−1 ◦ g(M)
?
= M does not hold in general. However, the

operation g−1 ◦ g is still interesting enough to warrant attention. If
we dentoe M ′ := g−1 ◦ g(M), then g(M ′) = g(M) holds, while
components of M ′ are ensured to be small, as it is an output of g−1.
It seems reasonable to refer to this as the gadget re-decomposition algo-
rithm. This operation is commonly referred to

as flattening in the literature.

Encryption & Security

With LWE and gadget decomposition in hand, we are now ready to
discuss the encryption algorithm of the GSW scheme and its security.
Recall that our goal is to, given a message µ ∈ {0, 1}, output small
matrix C ∈ Zm×m

p that satisfies the following for some small noise
vector e ∈ Zm

q . Importantly, for security, the secret eigenvector v
should not be leaked from the ciphertext C.

Cv = µv + e

https://en.wikipedia.org/wiki/Kronecker_product
https://en.wikipedia.org/wiki/Kronecker_product

(guest lecture) fully homomorphic encryption 5

Note that, in the case of µ = 0, our goal reduces to producing
a pseudorandom small matrix C satisfying Cv ≈ 0. This follows
almost immediately from LWE and gadget decomposition. Consider
an LWE sample with a uniformly random secret s ← Zn

q : Sample
a uniform random matrix A ← Zm×n

q and small noise e ∈ Zm
q .

Then, Â = (A||As + e) is pseudorandom over Z
m×(n+1)
q under LWE

assumption. Furthermore, if we define ŝ = (−s, 1) ∈ Zn+1
q , we

have Âŝ = e ≈ 0. Also, note the following equality from gadget
decomposition.

Âŝ = g ◦ g−1(Â)ŝ

= (g−1(Â)G)ŝ

= g−1(Â)(Gŝ)

Now, if we set m = (n + 1)k, then C = g−1(Â) ∈ Zm×m
q is a pseu-

dorandom small matrix, satisfying Cv ≈ 0 for v = Gŝ ∈ Zm
q as we

desired.
For the case of µ = 1, one might consider simply returning

g−1(Â) + µIm. However, this naive approach may leave noticeable
traces on the diagonal entries, since g−1(Â) is not pseudorandom
over the entire Zm×m

q , but only over a subset of small matrices. A
straightforward fix is to apply re-decomposition, which can be fur-
ther simplified as shown below.

g−1 ◦ g(g−1(Â) + µIm) = g−1
(
(g−1(Â) + µIm)G

)
= g−1

(
g−1(Â)G + µG

)
= g−1(Â + µG)

Putting Everything Together

Below is a summary of the scheme. First, set (n, q, χ) so that LWEn,q,χ,m

is hard, where m = (n + 1)k for k = ⌈log q⌉. To support homomor-
phism, the error distribution χ must be small.

• KeyGen(1λ): Sample uniform random s ← Zn
q and output it as the

secret key sk = s.

• Encsk(µ): Given a message µ ∈ {0, 1} as input, sample a uniform
random matrix A ← Zm×n

q and small noise e ← χm. Set Â =

(A||As + e) ∈ Z
m×(n+1)
q . Output C = g−1(Â + µG) ∈ Zm×m

q .

• Decsk(C): Given a ciphertext C ∈ Zm×m
q as input, compute m =

C(Gŝ), where ŝ = (−s, 1) ∈ Zn+1
q . Output 0 if every component of

m is small, and output 1 otherwise.

• C1 ⊞ C2: Output C1 + C2.

(guest lecture) fully homomorphic encryption 6

• C1 ⊠ C2: Output C1C2.

Better Noise Control

While the above scheme already provides non-trivial homomor-
phism, it is not sufficient to be bootstrappable. While we are not
going to do precise noise analysis, the main issue is that the compo-
nents of the ciphertexts grow double-exponentially with respect to the
(multiplicative) depth of the circuit. We can address this issue by ap- Larger parameters require greater

depth, which in turn requires even
larger parameters, and so on.

plying gadget re-decomposition after each arithmetic gate, ensuring that
the ciphertext components remain small. This yields the bootstrap-
pable GSW SHE scheme.

• C1 ⊞ C2: Output g−1 ◦ g (C1 + C2).

• C1 ⊠ C2: Output g−1 ◦ g (C1C2).

Simplified Version

In fact, we can simplify the above description of the GSW scheme as
follows, which is the version most research papers adopt. While this More precisely, the PKE version of it.

provides a more compact presentation, I personally find the earlier
version more accessible at first glance, particularly for understanding
the structure of the homomorphism through eigenvalues. Therefore, For instance, a ciphertext of the scheme

below is not a square matrix.we chose to present the earlier version first. We leave it as an exercise
to verify that the following scheme is essentially equivalent to the
previous description of the GSW scheme.

• KeyGen(1λ): Sample uniform random s ← Zn
q and output it as the

secret key sk = s.

• Encsk(µ): Given a message µ ∈ {0, 1} as input, sample a uniform
random matrix A ← Zm×n

q and small noise e ← χm. Set Â =

(A||As + e) ∈ Z
m×(n+1)
q . Output C = Â + µG.

• Decsk(C): Given a ciphertext C ∈ Z
m×(n+1)
q as input, compute

m = Cŝ, where ŝ = (−s, 1) ∈ Zn+1
q . Output 0 if every component

of m is small, and output 1 otherwise.

• C1 ⊞ C2: Output C1 + C2.

• C1 ⊠ C2: Output g−1 (C1)C2.

(guest lecture) fully homomorphic encryption 7

References

Zvika Brakerski and Vinod Vaikuntanathan. Lattice-based FHE as secure as PKE. In ITCS, 2014.

Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, 2009.

Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based. In CRYPTO, 2013.

Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In STOC, 2005.

Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homomorphic encryption
over the integers. In EUROCRYPT, 2010.

	GSW Scheme

