CS 65500 Advanced Cryptography

Guest Lecture: Fully Homomorphic Encryption

Keewoo Lee UC Berkeley

Fully Homomorphic Encryption (FHE)

- FHE is a cryptosystem that supports arbitrary computation on encrypted data
- FHE = (KeyGen, Enc, Dec, Eval)
 - $sk \leftarrow KeyGen(1^{\lambda})$ $ct(m) \leftarrow Enc(sk,m)$ sk-FHE; Will come back to this later.

 - $m \leftarrow Dec(sk, ct(m))$
 - $ct(f(m)) \leftarrow Eval(f, ct(m))$
- We require Correctness & Semantic Security
- Also "Compactness"
 - The output length of $Eval(f, \cdot)$ should depend only on the output length of $f(\cdot)$.
 - Otherwise, FHE is trivial to achieve. (why?)

Applications of FHE

- Privacy-preserving Outsourced Computation
 - Secure Cloud Computing
 - End-to-End Encrypted Web Services
 - Direct construction of PIR

- Round-optimal & Communication-efficient 2PC
 - (with some caveats: semi-honest & circuit privacy)
 - Direct construction of (semi-honest) PSI

Brief History of FHE

- (1978) Problem Formulation [Rivest-Adleman-Dertouzos;78]
 - c.f. RSA [Rivest-Shamir-Adleman;77]
- 30 Years of Dark Age
 - Partial Solutions & Negative Results
 - "Holy Grail" of Cryptography

Q. Why is it so challenging and intriguing?

The tension between **structure** and **hardness**, and between **functionality** and **privacy**.

- (2009) Breakthrough: First FHE Construction [Gentry;STOC'09]
 - Gödel Prize 2022: Brakerski-Gentry-Vaikuntanathan
- 15 Years of Intensive Research
 - Rapid improvement from theory to practice (outpacing the Moore's law!)
 - ✓ Boneh@CCS'24: "FHE will be used for everything(?)"

THE STATE OF FHE Market Map*

*Is your FHE project missing? Get in touch at zama.ai/the-state-of-fhe-report

Homomorphic Encryption across Apple features

Real World Crypto 2025

Apple's Real World Deployment of Homomorphic Encryption at Scale <u>https://www.youtube.com/live/R1NEfuv3iMk?t=16963s</u>

The Egyptian god protocols: three powerful and highly general-purpose constructions that can let us do computation on data while at the same time keeping the data completely private.

https://vitalik.eth.limo/general/2025/04/14/privacy.html

Taxonomy of HE

- Disclaimer: These terminologies are not universally agreed upon
- Fully Homomorphic Encryption (FHE)
 - A single parameter set can support arbitrary circuits.
- Somewhat Homomorphic Encryption (SHE)
 - For any circuit, we can choose a parameter set to support it.
 - e.g. Can support circuits only up to a certain depth (a.k.a. Leveled FHE)
- Partially Homomorphic Encryption
 - Fundamental restriction on supported homomorphic circuits
 - e.g. Group HE (Additive HE, Multiplicative HE), Linearly HE, etc

- Enough to evaluate *its own decryption circuit*, plus a small additional margin. (The Key Idea of Bootstrapping)
- Challenge: Greater depth requires larger parameters, which in turn necessitate even greater depth, and so on.
- Prior to [Gentry;STOC'09], no such SHE were known.

Transciphering (a.k.a. Re-encryption) [Lauter-Naehrig-Vaikuntanathan;11]

- Goal: Securely delegate the ability to convert SKE (e.g. AES) ctxt into FHE ctxt
 - Naively providing sk_{SKE} compromises privacy
- Motivation: Expansion Ratio of FHE is Large
 - Reduce communication and server storage by sending and storing SKE ctxt.
 - Server converts to FHE ctxt only at use.
- Idea: Homomorphic Decryption!

Transciphering (a.k.a. Re-encryption) [Lauter-Naehrig-Vaikuntanathan;11]

- Publish $ct_{FHE}(sk_{SKE})$ as transciphering key
- To transcipher $ct_{SKE}(m)$, compute the following (Homomorphic Decryption):

$$Eval_{FHE} \left(Dec_{SKE} (\cdot, ct_{SKE}(m)), ct_{FHE}(sk_{SKE}) \right)$$

$$= ct_{FHE} \left(Dec_{SKE} (sk_{SKE}, ct_{SKE}(m)) \right)$$

$$= ct_{FHE} (m)$$

$$Eval_{FHE} (f, ct_{FHE}(x))$$

$$= ct_{FHE} (f(x))$$

$$Dec_{SKE} (sk_{SKE}, ct_{SKE}(x))$$

$$= ct_{FHE}(f(x))$$

$$Dec_{SKE}(sk_{SKE}, ct_{SKE}(x)) = x$$

Transciphering to SHE

 $= ct_{SHE}(m)$

- Publish $ct_{SHE}(sk_{SKE})$ as transciphering key
- To transcipher $ct_{SKE}(m)$, compute the following (Homomorphic Decryption):

$$Eval_{SHE} \left(Dec_{SKE} (\cdot, ct_{SKE}(m)), ct_{SHE}(sk_{SKE}) \right)$$
$$= ct_{SHE} \left(Dec_{SKE} (sk_{SKE}, ct_{SKE}(m)) \right)$$

 $Eval_{SHE}(f, ct_{SHE}(x))$ = $ct_{SHE}(f(x))$

• Holds if *SHE* supports $f = Dec_{SKE}(\cdot, ct_{SKE}(m))$, assuming the transciphering key is a fresh ctxt.

Transciphering to SHE

 $= ct_{SHE}(F(m))$

- Publish $ct_{SHE}(sk_{SKE})$ as transciphering key
- To transcipher $ct_{SKE}(m)$, compute the following (Homomorphic Decryption):

$$Eval_{SHE} \left(F \circ Dec_{SKE} \left(\cdot, ct_{SKE}(m) \right), ct_{SHE}(sk_{SKE}) \right) = ct_{SHE} \left(F \circ Dec_{SKE}(sk_{SKE}, ct_{SKE}(m)) \right)$$

$$Eval_{SHE}(f, ct_{SHE}(x))$$

= $ct_{SHE}(f(x))$

• Holds if *SHE* supports $f = F \circ Dec_{SKE}(\cdot, ct_{SKE}(m))$, assuming the transciphering key is a fresh ctxt.

Bootstrapping: SHE Self-Transciphering

Publish *ct_{SHE}* (*sk_{SHE}*) as bootstrapping key

 $= ct_{SHE}(F(m))$

• To compute F on $ct_{SHE}(m)$, compute the following (Homomorphic Decryption):

$$Eval_{SHE} \left(F \circ Dec_{SHE} \left(\cdot , ct_{SHE}(m) \right), ct_{SHE}(sk_{SHE}) \right)$$

= $ct_{SHE} \left(F \circ Dec_{SHE}(sk_{SHE}, ct_{SHE}(m)) \right)$

$$Eval_{SHE}(f, ct_{SHE}(x)) = ct_{SHE}(f(x))$$

• Holds if *SHE* supports $f = F \circ Dec_{SHE}(\cdot, ct_{SHE}(m))$, assuming the bootstrapping key is a fresh ctxt.

This procedure requires no homomorphic property of $ct_{SHE}(m)$ other than its decryptability!!!

Bootstrapping: SHE Self-Transciphering

- Publish $ct_{SHE}(sk_{SHE})$ as bootstrapping key
- To compute F on $ct_{SHE}(m)$, compute the following (Homomorphic Decryption):

$$Eval_{SHE}(F \circ Dec_{SHE}(\cdot, ct_{SHE}(m)), ct_{SHE}(sk_{SHE}))$$

Theorem. Let SHE = (KeyGen, Enc, Dec, Eval) be a "secure" SHE scheme that supports homomorphic evaluation of $f(x) = Dec(x, ct_1) NAND Dec(x, ct_2)$. Then, *SHE* can be turned into am FHE scheme.

Bootstrapping

- Bootstrapping SHE is homomorphically evaluating its own decryption circuit.
- Gentry's Bootstrapping is interesting in many ways.
 - Self-reference
 - Connection to Circular Security

Bootstrapping

- Bootstrapping SHE is homomorphically evaluating its own decryption circuit.
- Gentry's Bootstrapping is interesting in many ways.
 - Self-reference
 - Connection to Circular Security
 - Non-blackbox technique
- Gentry's Real Thought Process:
 - "What would be the coolest circuit for an HE scheme to evaluate?"
 - "Probably its own decryption circuit."
 - "Eureka!"

- Enough to evaluate *its own decryption circuit*, plus a small additional margin. (The Key Idea of Bootstrapping)
- Challenge: Greater depth requires larger parameters, which in turn necessitate even greater depth, and so on.
- Prior to [Gentry;STOC'09], no such SHE were known.

Why GSW over other schemes?

- Disclaimer: Vanilla GSW is rarely used in "practice"
 - Expansion Ratio > 2^{30} : 1-bit message \rightarrow at least 1Gbit ctxt
 - c.f. Expansion Ratio of AES (resp. ElGamal) is 1 (resp. 2)
- Easy-to-understand
 - AGCD-based vDGHV is also fairly intuitive but is no longer considered mainstream
- Foundation of other constructions
 - A ring variant of GSW serves as a building block of the TFHE scheme
 - ✓ TFHE, supported by Zama, is currently one of the leading schemes (c.f. CKKS, BGV/BFV)

Why sk-FHE instead of pk-FHE?

- sk-FHE already enables interesting applications
 - In fact, all the applications mentioned so far require only sk-FHE!
 There are three players in FHE application scenarios: encryptor, evaluator, decryptor.
 In many cases, encryptor = decryptor.
- We have a generic conversion from sk-FHE to pk-FHE [Rothblum;TCC'11]
 - Idea: Publish a bunch of encryptions of zero as the public key.
 - \checkmark As the final step of encryption, homomorphically add a random subset of them.
 - ✓ Security follows from Leftover Hash Lemma
 - ✓ In the same spirit as Regev's LWE-based PKE [Regev;STOC'05]
 - Interesting in the sense that Minicrypt+Homomorphism implies Cryptomania
 - \checkmark c.f. black-box separation between Minicrypt and Cryptomania

Appendix

Limitations of Vanilla FHE

- Circuit Privacy
 - Does the evaluated ctxt leak any information about the circuit applied to it?
 - c.f. Noise-flooding [Gentry;STOC'09], Sanitization [Ducas-Stehlé;Eurocrypt'16]
- Key Management
 - In MPC protocols with more than two parties, who should hold the secret key?
 - c.f. Threshold FHE & Multi-key FHE
- Verifiability
 - For malicious security, we must ensure the evaluator did their job correctly.
 - c.f. Verifiable FHE

Limitations of Vanilla FHE (cont.)

Computational Model

- Modern FHE schemes are based on the Circuit Model
 - ✓ in contrast to the RAM Model (w/ IF-THEN-ELSE)
 - ✓ c.f. Binary Search, Quicksort
 - \checkmark Challenge: By definition, runtime and output length cannot depend on the input
- Certain applications align well with the circuit model
 - ✓ e.g. ML Inference
- But other applications require some care
 - ✓ e.g. ML Training
- c.f. RAM-FHE [Lin-Mook-Wichs;STOC'23]