
CS 65500

Advanced Cryptography

Keewoo Lee

UC Berkeley

Guest Lecture: Fully Homomorphic Encryption

Fully Homomorphic Encryption (FHE)

▪ FHE is a cryptosystem that supports arbitrary computation on encrypted data

▪ 𝐹𝐻𝐸 = (𝐾𝑒𝑦𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐, 𝑬𝒗𝒂𝒍)

• 𝑠𝑘 ← 𝐾𝑒𝑦𝐺𝑒𝑛(1𝜆)

• 𝑐𝑡 𝑚 ← 𝐸𝑛𝑐(𝑠𝑘, 𝑚)

• 𝑚 ← 𝐷𝑒𝑐 𝑠𝑘, 𝑐𝑡 𝑚

• 𝑐𝑡 𝑓 𝑚 ← 𝐸𝑣𝑎𝑙 𝑓, 𝑐𝑡 𝑚

▪ We require Correctness & Semantic Security

▪ Also “Compactness”

• The output length of 𝐸𝑣𝑎𝑙 𝑓, ⋅ should depend only on the output length of 𝑓(⋅).

• Otherwise, FHE is trivial to achieve. (why?)

𝑓(∙) 𝐸𝑣𝑎𝑙(𝑓, ∙)

𝐸𝑛𝑐

𝐷𝑒𝑐

𝑚

𝑓(𝑚)

𝑐𝑡 𝑚

𝑐𝑡 𝑓 𝑚

sk-FHE; Will come back
to this later.

Applications of FHE

▪ Privacy-preserving Outsourced Computation

• Secure Cloud Computing

• End-to-End Encrypted Web Services

• Direct construction of PIR

▪ Round-optimal & Communication-efficient 2PC

• (with some caveats: semi-honest & circuit privacy)

• Direct construction of (semi-honest) PSI

𝑓(∙) 𝐸𝑣𝑎𝑙(𝑓, ∙)

𝐸𝑛𝑐

𝐷𝑒𝑐

𝑚

𝑓(𝑚)

𝑐𝑡 𝑚

𝑐𝑡 𝑓 𝑚

Meme Credit: Leo Ducas

Brief History of FHE

▪ (1978) Problem Formulation [Rivest-Adleman-Dertouzos;78]

• c.f. RSA [Rivest-Shamir-Adleman;77]

▪ 30 Years of Dark Age

• Partial Solutions & Negative Results

• “Holy Grail” of Cryptography

▪ (2009) Breakthrough: First FHE Construction [Gentry;STOC’09]

• Gödel Prize 2022: Brakerski-Gentry-Vaikuntanathan

▪ 15 Years of Intensive Research

• Rapid improvement from theory to practice (outpacing the Moore’s law!)

✓ Boneh@CCS’24: “FHE will be used for everything(?)”

Q. Why is it so challenging and intriguing?

The tension between structure and hardness,

and between functionality and privacy.

Apple’s Real World Deployment of Homomorphic Encryption at Scale
https://www.youtube.com/live/R1NEfuv3iMk?t=16963s

https://www.youtube.com/live/R1NEfuv3iMk?t=16963s

https://vitalik.eth.limo/general/2025/04/14/privacy.html

https://vitalik.eth.limo/general/2025/04/14/privacy.html

Taxonomy of HE

▪ Disclaimer: These terminologies are not universally agreed upon

▪ Fully Homomorphic Encryption (FHE)

• A single parameter set can support arbitrary circuits.

▪ Somewhat Homomorphic Encryption (SHE)

• For any circuit, we can choose a parameter set to support it.

• e.g. Can support circuits only up to a certain depth (a.k.a. Leveled FHE)

▪ Partially Homomorphic Encryption

• Fundamental restriction on supported homomorphic circuits

• e.g. Group HE (Additive HE, Multiplicative HE), Linearly HE, etc

Gentry’s Blueprint

SHE FHE

Step 2. Bootstrapping: Upgrade to FHEStep 1. Construct Powerful-Enough SHE

• Enough to evaluate its own decryption circuit, plus a small additional margin. (The Key Idea of Bootstrapping)

• Challenge: Greater depth requires larger parameters, which in turn necessitate even greater depth, and so on.

• Prior to [Gentry;STOC’09], no such SHE were known.

(SKE Ver.) GSW scheme [Gentry-Sahai-Waters;Crypto’13]

Transciphering (a.k.a. Re-Encryption)

Transciphering (a.k.a. Re-encryption) [Lauter-Naehrig-Vaikuntanathan;11]

▪ Goal: Securely delegate the ability to convert SKE (e.g. AES) ctxt into FHE ctxt

• Naively providing 𝑠𝑘𝑆𝐾𝐸 compromises privacy

▪ Motivation: Expansion Ratio of FHE is Large

• Reduce communication and server storage by sending and storing SKE ctxt.

• Server converts to FHE ctxt only at use.

▪ Idea: Homomorphic Decryption!

Transciphering (a.k.a. Re-encryption) [Lauter-Naehrig-Vaikuntanathan;11]

▪ Publish 𝑐𝑡𝐹𝐻𝐸(𝑠𝑘𝑆𝐾𝐸) as transciphering key

▪ To transcipher 𝑐𝑡𝑆𝐾𝐸 𝑚 , compute the following (Homomorphic Decryption):

𝐸𝑣𝑎𝑙𝐹𝐻𝐸 𝐷𝑒𝑐𝑆𝐾𝐸 ⋅ , 𝑐𝑡𝑆𝐾𝐸 𝑚 , 𝑐𝑡𝐹𝐻𝐸 𝑠𝑘𝑆𝐾𝐸

= 𝑐𝑡𝐹𝐻𝐸 𝐷𝑒𝑐𝑆𝐾𝐸 𝑠𝑘𝑆𝐾𝐸 , 𝑐𝑡𝑆𝐾𝐸 𝑚

= 𝑐𝑡𝐹𝐻𝐸 𝑚

𝐸𝑣𝑎𝑙𝐹𝐻𝐸 𝑓, 𝑐𝑡𝐹𝐻𝐸 𝑥

= 𝑐𝑡𝐹𝐻𝐸 𝑓 𝑥

𝐷𝑒𝑐𝑆𝐾𝐸 𝑠𝑘𝑆𝐾𝐸 , 𝑐𝑡𝑆𝐾𝐸 𝑥
= 𝑥

Transciphering to SHE

▪ Publish 𝑐𝑡𝑆𝐻𝐸(𝑠𝑘𝑆𝐾𝐸) as transciphering key

▪ To transcipher 𝑐𝑡𝑆𝐾𝐸 𝑚 , compute the following (Homomorphic Decryption):

𝐸𝑣𝑎𝑙𝑆𝐻𝐸 𝐷𝑒𝑐𝑆𝐾𝐸 ⋅ , 𝑐𝑡𝑆𝐾𝐸 𝑚 , 𝑐𝑡𝑆𝐻𝐸 𝑠𝑘𝑆𝐾𝐸

= 𝑐𝑡𝑆𝐻𝐸 𝐷𝑒𝑐𝑆𝐾𝐸 𝑠𝑘𝑆𝐾𝐸 , 𝑐𝑡𝑆𝐾𝐸 𝑚

= 𝑐𝑡𝑆𝐻𝐸 𝑚

𝐸𝑣𝑎𝑙𝑆𝐻𝐸 𝑓, 𝑐𝑡𝑆𝐻𝐸 𝑥

= 𝑐𝑡𝑆𝐻𝐸 𝑓 𝑥

• Holds if 𝑆𝐻𝐸 supports 𝑓 = 𝐷𝑒𝑐𝑆𝐾𝐸 ⋅ , 𝑐𝑡𝑆𝐾𝐸 𝑚 ,

assuming the transciphering key is a fresh ctxt.

Transciphering to SHE

▪ Publish 𝑐𝑡𝑆𝐻𝐸(𝑠𝑘𝑆𝐾𝐸) as transciphering key

▪ To transcipher 𝑐𝑡𝑆𝐾𝐸 𝑚 , compute the following (Homomorphic Decryption):

𝐸𝑣𝑎𝑙𝑆𝐻𝐸 𝐹 ∘ 𝐷𝑒𝑐𝑆𝐾𝐸 ⋅ , 𝑐𝑡𝑆𝐾𝐸 𝑚 , 𝑐𝑡𝑆𝐻𝐸 𝑠𝑘𝑆𝐾𝐸

= 𝑐𝑡𝑆𝐻𝐸 𝐹 ∘ 𝐷𝑒𝑐𝑆𝐾𝐸 𝑠𝑘𝑆𝐾𝐸 , 𝑐𝑡𝑆𝐾𝐸 𝑚

= 𝑐𝑡𝑆𝐻𝐸 𝐹 𝑚

𝐸𝑣𝑎𝑙𝑆𝐻𝐸 𝑓, 𝑐𝑡𝑆𝐻𝐸 𝑥

= 𝑐𝑡𝑆𝐻𝐸 𝑓 𝑥

• Holds if 𝑆𝐻𝐸 supports 𝑓 = 𝐹 ∘ 𝐷𝑒𝑐𝑆𝐾𝐸 ⋅ , 𝑐𝑡𝑆𝐾𝐸 𝑚 ,

assuming the transciphering key is a fresh ctxt.

Bootstrapping: SHE Self-Transciphering

▪ Publish 𝑐𝑡𝑆𝐻𝐸(𝑠𝑘𝑆𝐻𝐸) as bootstrapping key

▪ To compute 𝐹 on 𝑐𝑡𝑆𝐻𝐸 𝑚 , compute the following (Homomorphic Decryption):

𝐸𝑣𝑎𝑙𝑆𝐻𝐸 𝐹 ∘ 𝐷𝑒𝑐𝑆𝐻𝐸 ⋅ , 𝑐𝑡𝑆𝐻𝐸 𝑚 , 𝑐𝑡𝑆𝐻𝐸 𝑠𝑘𝑆𝐻𝐸

= 𝑐𝑡𝑆𝐻𝐸 𝐹 ∘ 𝐷𝑒𝑐𝑆𝐻𝐸 𝑠𝑘𝑆𝐻𝐸 , 𝑐𝑡𝑆𝐻𝐸 𝑚

= 𝑐𝑡𝑆𝐻𝐸 𝐹 𝑚

𝐸𝑣𝑎𝑙𝑆𝐻𝐸 𝑓, 𝑐𝑡𝑆𝐻𝐸 𝑥

= 𝑐𝑡𝑆𝐻𝐸 𝑓 𝑥

• Holds if 𝑆𝐻𝐸 supports 𝑓 = 𝐹 ∘ 𝐷𝑒𝑐𝑆𝐻𝐸 ⋅ , 𝑐𝑡𝑆𝐻𝐸 𝑚 ,

assuming the bootstrapping key is a fresh ctxt.

This procedure requires no homomorphic property of 𝒄𝒕𝑺𝑯𝑬 𝒎 other than its decryptability!!!

Bootstrapping: SHE Self-Transciphering

▪ Publish 𝑐𝑡𝑆𝐻𝐸(𝑠𝑘𝑆𝐻𝐸) as bootstrapping key

▪ To compute 𝐹 on 𝑐𝑡𝑆𝐻𝐸 𝑚 , compute the following (Homomorphic Decryption):

𝐸𝑣𝑎𝑙𝑆𝐻𝐸 𝐹 ∘ 𝐷𝑒𝑐𝑆𝐻𝐸 ⋅ , 𝑐𝑡𝑆𝐻𝐸 𝑚 , 𝑐𝑡𝑆𝐻𝐸 𝑠𝑘𝑆𝐻𝐸

= 𝑐𝑡𝑆𝐻𝐸 𝐹 ∘ 𝐷𝑒𝑐𝑆𝐻𝐸 𝑠𝑘𝑆𝐻𝐸 , 𝑐𝑡𝑆𝐻𝐸 𝑚

= 𝑐𝑡𝑆𝐻𝐸 𝐹 𝑚 • Holds if 𝑆𝐻𝐸 supports 𝑓 = 𝐹 ∘ 𝐷𝑒𝑐𝑆𝐻𝐸 ⋅ , 𝑐𝑡𝑆𝐻𝐸 𝑚 ,

assuming the bootstrapping key is a fresh ctxt.

This procedure requires no homomorphic property of 𝒄𝒕𝑺𝑯𝑬 𝒎 other than its decryptability!!!

Theorem. Let 𝑺𝑯𝑬 = (𝑲𝒆𝒚𝑮𝒆𝒏, 𝑬𝒏𝒄, 𝑫𝒆𝒄, 𝑬𝒗𝒂𝒍) be a “secure” SHE scheme that

supports homomorphic evaluation of 𝒇(𝒙) = 𝑫𝒆𝒄 𝒙, 𝒄𝒕𝟏 𝑵𝑨𝑵𝑫 𝑫𝒆𝒄 𝒙, 𝒄𝒕𝟐 .

Then, 𝑺𝑯𝑬 can be turned into am FHE scheme.

Bootstrapping

▪ Bootstrapping SHE is homomorphically evaluating its own decryption circuit.

▪ Gentry’s Bootstrapping is interesting in many ways.

• Self-reference

• Connection to Circular Security

• Non-blackbox technique

▪ Gentry’s Real Thought Process:

• “What would be the coolest circuit for an HE scheme to evaluate?”

• “Probably its own decryption circuit.”

• “Eureka!”

Circular Security

Q. Are we allowed to do this?

A. Not in general...

a circularly secure SHE scheme

• IND-CPA security says nothing about circular security: We can

convert any IND-CPA secure encryption scheme into one that

remains IND-CPA secure but is circularly insecure. (How?)

• Constructing a provably circularly secure bootstrappable SHE

remains a major open problem.

• Nonetheless, we believe that natural SHE schemes, including GSW,

do satisfy circular security.

Bootstrapping

▪ Bootstrapping SHE is homomorphically evaluating its own decryption circuit.

▪ Gentry’s Bootstrapping is interesting in many ways.

• Self-reference

• Connection to Circular Security

• Non-blackbox technique

▪ Gentry’s Real Thought Process:

• “What would be the coolest circuit for an HE scheme to evaluate?”

• “Probably its own decryption circuit.”

• “Eureka!”

Gentry’s Blueprint

SHE FHE

Step 2. Bootstrapping: Upgrade to FHEStep 1. Construct Powerful-Enough SHE

• Enough to evaluate its own decryption circuit, plus a small additional margin. (The Key Idea of Bootstrapping)

• Challenge: Greater depth requires larger parameters, which in turn necessitate even greater depth, and so on.

• Prior to [Gentry;STOC’09], no such SHE were known.

(SKE Ver.) GSW scheme [Gentry-Sahai-Waters;Crypto’13]

Why GSW over other schemes?

▪ Disclaimer: Vanilla GSW is rarely used in “practice”

• Expansion Ratio > 230: 1-bit message → at least 1Gbit ctxt

• c.f. Expansion Ratio of AES (resp. ElGamal) is 1 (resp. 2)

▪ Easy-to-understand

• AGCD-based vDGHV is also fairly intuitive but is no longer considered mainstream

▪ Foundation of other constructions

• A ring variant of GSW serves as a building block of the TFHE scheme

✓ TFHE, supported by Zama, is currently one of the leading schemes (c.f. CKKS, BGV/BFV)

• Main technique used in GSW is extremely versatile across various other primitives

✓ Attribute-Based Encryption, Homomorphic Signature, Constrained PRF ...

Why sk-FHE instead of pk-FHE?

▪ sk-FHE already enables interesting applications

• In fact, all the applications mentioned so far require only sk-FHE!

✓ There are three players in FHE application scenarios: encryptor, evaluator, decryptor.

✓ In many cases, encryptor = decryptor.

▪ We have a generic conversion from sk-FHE to pk-FHE [Rothblum;TCC’11]

• Idea: Publish a bunch of encryptions of zero as the public key.

✓ As the final step of encryption, homomorphically add a random subset of them.

✓ Security follows from Leftover Hash Lemma

✓ In the same spirit as Regev’s LWE-based PKE [Regev;STOC’05]

• Interesting in the sense that Minicrypt+Homomorphism implies Cryptomania

✓ c.f. black-box separation between Minicrypt and Cryptomania

Appendix

Limitations of Vanilla FHE

▪ Circuit Privacy

• Does the evaluated ctxt leak any information about the circuit applied to it?

• c.f. Noise-flooding [Gentry;STOC’09], Sanitization [Ducas-Stehlé;Eurocrypt’16]

▪ Key Management

• In MPC protocols with more than two parties, who should hold the secret key?

• c.f. Threshold FHE & Multi-key FHE

▪ Verifiability

• For malicious security, we must ensure the evaluator did their job correctly.

• c.f. Verifiable FHE

Limitations of Vanilla FHE (cont.)

▪ Computational Model

• Modern FHE schemes are based on the Circuit Model

✓ in contrast to the RAM Model (w/ IF-THEN-ELSE)

✓ c.f. Binary Search, Quicksort

✓ Challenge: By definition, runtime and output length cannot depend on the input

• Certain applications align well with the circuit model

✓ e.g. ML Inference

• But other applications require some care

✓ e.g. ML Training

• c.f. RAM-FHE [Lin-Mook-Wichs;STOC’23]

	Default Section
	Slide 1: CS 65500 Advanced Cryptography
	Slide 2: Fully Homomorphic Encryption (FHE)
	Slide 3: Applications of FHE
	Slide 4: Brief History of FHE
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Taxonomy of HE
	Slide 9: Gentry’s Blueprint
	Slide 10: Transciphering (a.k.a. Re-encryption) [Lauter-Naehrig-Vaikuntanathan;11]
	Slide 11: Transciphering (a.k.a. Re-encryption) [Lauter-Naehrig-Vaikuntanathan;11]
	Slide 12: Transciphering to SHE
	Slide 13: Transciphering to SHE
	Slide 14: Bootstrapping: SHE Self-Transciphering
	Slide 15: Bootstrapping: SHE Self-Transciphering
	Slide 16: Bootstrapping
	Slide 17: Circular Security
	Slide 18: Bootstrapping
	Slide 19: Gentry’s Blueprint
	Slide 20: Why GSW over other schemes?
	Slide 21: Why sk-FHE instead of pk-FHE?
	Slide 22: Appendix
	Slide 23: Limitations of Vanilla FHE
	Slide 24: Limitations of Vanilla FHE (cont.)

