CS65500: Advanced Cryptography

Instructor: Aarushi Goel

Homework 2

Due: February 13; 2025 (11:59 PM)

Consider the following definition of a 1-out-of-2 oblivious transfer protocol. Then answer the questions below:

Definition 1 (Two-Message Semi-Honest OT) A two-message 1-out-of-2 oblivious transfer between a receiver R and a sender S is defined by a tuple of 3 PPT algorithms (OT_R, OT_S, OT_{out}) . The OT protocol works as follows (let λ be the security parameter):

- 1. Receiver: The receiver computes $(\mathsf{msg}_R, \rho) \leftarrow \mathsf{OT}_R(1^\lambda, b)$, where $b \in \{0, 1\}$ is the receiver's input. It sends msg_R to the sender.
- 2. Sender: The sender computes $msg_S \leftarrow OT_S(1^{\lambda}, msg_R, (m_0, m_1))$, where $m_0, m_1 \in \{0, 1\}^*$ are the sender's input. The sender sends msg_S to the receiver.
- 3. **Receiver's Output:** The receiver computes $m_b \leftarrow \mathsf{OT}_{\mathsf{out}}(\rho, \mathsf{msg}_S)$.

This protocol satisfies the following properties:

• Correctness: For each $m_0, m_1 \in \{0, 1\}^*$, $b \in \{0, 1\}$, it holds that

$$\Pr \begin{bmatrix} (\rho, \mathsf{msg}_R) \leftarrow \mathsf{OT}_R \left(1^{\lambda}, b \right) \\ \mathsf{msg}_S \leftarrow OT_S \left(1^{\lambda}, \mathsf{msg}_R, (m_0, m_1) \right) \end{bmatrix} \mathsf{OT}_{\mathsf{out}} \left(\rho, \mathsf{msg}_R, \mathsf{msg}_S \right) = m_b \end{bmatrix} = 1,$$

• Security against Semi-Honest Sender: It holds that,

$$\left\{ (\mathsf{msg}_R^0, \rho^0) \leftarrow \mathsf{OT}_R\left(1^\lambda, 0\right) \mid \mathsf{msg}_R^0 \right\} \approx_c \left\{ (\mathsf{msg}_R^1, \rho^1) \leftarrow \mathsf{OT}_R\left(1^\lambda, 1\right) \mid \mathsf{msg}_R^1 \right\}$$

• Security against Semi-Honest Receiver: It holds that for each $b \in \{0, 1\}$, $m_0, m_1, m'_0, m'_1 \in \{0, 1\}^*$, and $m_b = m'_b$,

$$\left\{\mathsf{OT}_S\left(1^{\lambda},\mathsf{msg}_R,(m_0,m_1)\right)\right\}\approx_c\left\{\mathsf{OT}_S\left(1^{\lambda},\mathsf{msg}_R,(m_0',m_1')\right)\right\}$$

where $(\mathsf{msg}_R, \rho) \leftarrow OT_R(1^{\lambda}, b)$.

1 On the Equivalence of Definitions

Prove that an oblivious transfer protocol $\pi = (OT_R, OT_S, OT_{out})$ that satisfies Definition 1 also meets the simulator-based definition of semi-honest secure 1-out-of-2 OT discussed in class.

2 1-out-of-4 Oblivious Transfer

Let (OT_R, OT_S, OT_{out}) be a semi-honest secure, two message, 1-out-of-2 oblivious transfer protocol that satisfies Definition 1. Now consider the following $(OT_R^*, OT_S^*, OT_{out}^*)$ construction of a 1-out-of-4 oblivious transfer protocol:

1. $(\mathsf{msg}_R^*, \rho^*) \leftarrow \mathsf{OT}_R^*(1^\lambda, b)$: Let $b \in [4]$ be the receiver's input. For each $i \in [4]$, the receiver computes the following:

if
$$b = i$$
, $(\mathsf{msg}_R^i, \rho^i) \leftarrow \mathsf{OT}_R(1^\lambda, 1)$; else, $(\mathsf{msg}_R^i, \rho^i) \leftarrow \mathsf{OT}_R(1^\lambda, 0)$.

Finally, the receiver sets $\mathsf{msg}_R^* = (\{\mathsf{msg}_R^i\}_{i \in [4]}), \rho^* = (\{\rho^i\}_{i \in [4]})$ and sends msg_R^* to the sender.

2. $\mathsf{msg}_S^* \leftarrow \mathsf{OT}_S^*(1^\lambda, \mathsf{msg}_R^*, (m_1, m_2, m_3, m_4))$: Let $m_1, m_2, m_3, m_4 \in \{0, 1\}^*$ be the sender's inputs. The sender parses $\mathsf{msg}_R^* = (\{\mathsf{msg}_R^i\}_{i \in [4]})$. For each $i \in [4]$, the sender computes the following:

$$\mathsf{msg}_S^i \leftarrow \mathsf{OT}_S(1^\lambda, \mathsf{msg}_R^i, (0, m_i))$$

Finally, the sender sets $\mathsf{msg}_S^* = (\{\mathsf{msg}_S^i\}_{i \in [4]})$ and sends msg_S^* to the receiver.

3. $m_b \leftarrow \mathsf{OT}^*_{\mathsf{out}}(\rho^*, \mathsf{msg}^*_S)$: The receiver parses $\rho^* = (\{\rho^i\}_{i \in [4]})$ and $\mathsf{msg}^*_S = (\{\mathsf{msg}^i_S\}_{i \in [4]})$. Finally, it computes and outputs $m_b \leftarrow \mathsf{OT}_{\mathsf{out}}(\rho^b, \mathsf{msg}^b_S)$.

Prove that the above construction $(OT_R^*, OT_S^*, OT_{out}^*)$ is that of a semi-honest secure **1-out-of-4 oblivious transfer protocol.** (Note that you need to argue correctness and security against a semi-honest sender and receiver.)

3 OT Combiner

Let $(OT_R^1, OT_S^1, OT_{out}^1)$ and $(OT_R^2, OT_S^2, OT_{out}^2)$ be two message, 1-out-of-2 oblivious transfer (OT) protocols, both satisfying correctness and security against a semi-honest sender. However, only one of them is guaranteed to be secure against a semi-honest receiver. Now, consider the following new construction $(OT_R^*, OT_S^*, OT_{out}^*)$ of a two-message oblivious transfer protocol:

- $(\mathsf{msg}_R^*, \rho^*) \leftarrow \mathsf{OT}_R^*(1^\lambda, b)$: Let $b \in \{0, 1\}$ be the receiver's input. The receiver computes $(\mathsf{msg}_R^1, \rho^1) \leftarrow \mathsf{OT}_R^1(1^\lambda, b)$ and $(\mathsf{msg}_R^2, \rho^2) \leftarrow \mathsf{OT}_R^2(1^\lambda, b)$. Finally, the receiver sets $\mathsf{msg}_R^* = (\mathsf{msg}_r^1, \mathsf{msg}_r^2), \ \rho^* = (\rho^1, \rho^2)$ and sends msg_R^* to the sender.
- $\operatorname{msg}_{S}^{*} \leftarrow \operatorname{OT}_{S}^{*}(1^{\lambda}, \operatorname{msg}_{R}^{*}, (m_{0}, m_{1}))$: Let $m_{0}, m_{1} \in \{0, 1\}^{*}$ be the sender's inputs. The sender parses $\operatorname{msg}_{R}^{*} = (\operatorname{msg}_{R}^{1}, \operatorname{msg}_{R}^{2})$ and randomly samples $m_{0}^{1}, m_{0}^{2}, m_{1}^{1}, m_{1}^{2} \in \{0, 1\}^{*}$, such that $m_{0}^{1} \oplus m_{0}^{2} = m_{0}$ and $m_{1}^{1} \oplus m_{1}^{2} = m_{1}$. The sender then computes $\operatorname{msg}_{S}^{1} \leftarrow \operatorname{OT}_{S}^{1}(1^{\lambda}, \operatorname{msg}_{R}^{1}, (m_{0}^{1}, m_{1}^{1}))$ and $\operatorname{msg}_{S}^{2} \leftarrow \operatorname{OT}_{S}^{2}(1^{\lambda}, \operatorname{msg}_{R}^{2}, (m_{0}^{2}, m_{1}^{2}))$. Finally, the sender sets $\operatorname{msg}_{S}^{*} = (\operatorname{msg}_{S}^{1}, \operatorname{msg}_{S}^{2})$ and sends $\operatorname{msg}_{S}^{*}$ to the receiver.
- $m_b \leftarrow \mathsf{OT}^*_{\mathsf{out}}(\rho^*, \mathsf{msg}^*_S)$: The receiver parses $\rho^* = (\rho^1, \rho^2)$ and $\mathsf{msg}^*_S = (\mathsf{msg}^1_S, \mathsf{msg}^2_S)$. The receiver then computes $m_b^1 \leftarrow \mathsf{OT}^1_{\mathsf{out}}(\rho^1, \mathsf{msg}^1_S)$ and $m_b^2 \leftarrow \mathsf{OT}^2_{\mathsf{out}}(\rho^2, \mathsf{msg}^2_S)$. Finally, the receiver outputs $m_b = m_b^1 \oplus m_b^2$.

Prove that the above construction $(OT_R^*, OT_S^*, OT_{out}^*)$ is a 1-out-of-2 oblivious transfer that is secure against a semi-honest receiver. (Note that you **DO NOT** need to show that this protocol is also secure against a semi-honest sender.)

4 Public-Key Encryption

Recall the following definition of a public-key encryption:

Definition 2 (IND-CPA Secure Public-Key Encryption) For all $\lambda \in \mathbb{N}$, a CPA-secure publickey encryption comprises of a tuple of PPT algorithms (KeyGen, Enc, Dec) defined as follows:

- (pk, sk) ← KeyGen(1^λ): The key generation algorithm takes the security parameter 1^λ as input and outputs a public-key pk and a secret-key sk.
- ct ← Enc(pk, m; r): The encryption algorithm takes as input, the public-key pk, a message m ∈ {0,1}* and a random string r ∈ {0,1}^λ, and outputs a ciphertext ct.
- *m* ← Dec(sk, *ct*): The decryption algorithm takes as input the secret-key sk and a ciphertext *ct*, and outputs a message *m*.

These algorithms satisfy the following:

1. Correctness: Let $(pk, sk) \leftarrow KeyGen(1^{\lambda})$, then $\forall m \in \{0, 1\}^*$ and uniformly sampled $r \leftarrow \{0, 1\}^{\lambda}$, it holds that:

 $\Pr[m \leftarrow \mathsf{Dec}(\mathsf{sk},\mathsf{Enc}(\mathsf{pk},m;r))] = 1$

2. **IND-CPA Security:** Let $(pk, sk) \leftarrow KeyGen(1^{\lambda})$, then $\forall m_0, m_1 \in \{0, 1\}^*$, the following two distributions are computationally indistinguishable:

$$\left\{\mathsf{Enc}(\mathsf{pk},m_0;r);r \leftarrow \{0,1\}^{\lambda}\right\} \quad and \quad \left\{\mathsf{Enc}(\mathsf{pk},m_1;r);r \leftarrow \{0,1\}^{\lambda}\right\}$$

Let (OT_R, OT_S, OT_{out}) be a semi-honest secure two message 1-out-of-2 oblivious transfer protocol that satisfies Definition 1. Now consider the following construction of a public-key encryption:

- KeyGen (1^{λ}) : Compute $(\mathsf{msg}_R, \rho) \leftarrow \mathsf{OT}_R(1^{\lambda}, 0)$. Set $\mathsf{pk} = \mathsf{msg}_R$ and $\mathsf{sk} = \rho$. Output $(\mathsf{pk}, \mathsf{sk})$.
- $\mathsf{Enc}(\mathsf{pk}, m)$: Compute $\mathsf{msg}_S \leftarrow \mathsf{OT}_S(1^\lambda, \mathsf{pk}, (m, m))$ and set $ct = \mathsf{msg}_S$. Output ciphertext ct.
- Dec(sk, ct): Compute and output $m \leftarrow OT_{out}(sk, ct)$.

Prove that the above is an IND-CPA secure public-key encryption scheme, i.e., it satisfies Definition 2.