
CS65500: Advanced Cryptography Instructor: Aarushi Goel

Homework 6

Due: April 25; 2025 (11:59 PM)

1 Private Set Intersection

(20 Points) Recall the following PSI protocol discussed in class and formally prove that it
satisfies semi-honest security with respect to both parties, Alice and Bob.

Setup. Alice has input X = {x1, . . . , xm}. Bob has input Y = {y1, . . . , yn}. Both parties agree
on a group (G, p, g). Both parties agree on a hash function H : {0, 1}∗ → G modeled as a random
oracle, which maps strings of arbitrary length into random group elements.

Alice → Bob.

1. Alice picks a random number α
$←− Zp;

2. For each i ∈ [m], Alice computes ai = H(xi)
α;

3. Alice sends A = {a1, . . . , am} to Bob;

Bob → Alice.

1. Bob picks a random number β
$←− Zp;

2. For each j ∈ [n], Bob computes bj = H(yj)
β;

3. For each i ∈ [m], Bob computes ci = aβi .

4. Bob sends B = {b1, . . . , bn} and C = {c1, . . . , cm} to Alice;

Output Computation.

1. Initialize a set Z = ∅;

2. For each j ∈ [n], Alice computes dj = bαj ;

3. For each i ∈ [m] such that there is a j ∈ [n] such that ci = dj , Alice adds xi to Z;

4. Alice computes and outputs Z.

1-1



2 Pseudorandom Correlation Generator

(15 Points) In class, we learned how to design a two-party pseudorandom correlation generator
(PCG) for the VOLE correlation, where one party upon expansion of their seed obtains pseudo-
random vectors u⃗ and v⃗, and the other party upon expansion of their seed obtains a random scalar
x and a pseudorandom vector w⃗, such that u⃗ · x + v⃗ = w⃗. Describe how this construction can be
adapted to generate a PCG for the following Beaver triple-style correlation: (⃗a, b, c⃗), where b is a
random scalar and a⃗, c⃗ are pseudorandom vectors satisfying a⃗ · b = c⃗. Each party upon expansion
of their seeds should obtain an additive secret sharing of a⃗, b, and c⃗. Argue correctness of your
construction. You do not need to prove its security.

(Hint: Observe that in a VOLE correlation, the pair −v⃗, w⃗ can be interpreted as additive shares
of u⃗ · x. Therefore, by letting a⃗ = u⃗ and b = x, the PCG discussed in class already enables the
parties to obtain additive shares of c⃗. The only remaining task is to modify this construction so
that it also yields additive secret shares of b and a⃗ – rather than having one party learn a⃗ and the
other learn b in the clear.)

3 Homomorphic Encryption

(20 points) Consider a special linearly homomorphic secret-key encryption scheme that satisfies
the following definition.

Definition 1 For all λ ∈ N, a CPA-secure special additively homomorphic secret-key encryption
comprises of a tuple of PPT algorithms (KeyGen,Enc,Dec,Refresh, Linfunc) defined as follows:

• (pk, sk)← KeyGen(1λ): The key generation algorithm takes the security parameter 1λ as input
and outputs a public-key pk and a secret-key sk.

• ct ← Enc(sk,m; r): The encryption algorithm takes as input, the secret-key sk, a message
m ∈ {0, 1}n and a random string r ∈ {0, 1}λ, and outputs a ciphertext ct.

• m ← Dec(sk, ct): The decryption algorithm takes as input the secret-key sk and a ciphertext
ct, and outputs a message m.

• ct′ ← Refresh(pk, ct; r): The refresh algorithm takes as input the public key pk, a ciphertext
ct and a random string r ∈ {0, 1}λ, and outputs a new ciphertext ct′.

• ct′ ← LinFunc(pk, f, ct1, . . . , ctk) : This algorithm takes as input the public key pk, a list of
k ≥ 1 ciphertexts ct1, . . . , ctk and a linear function f : ({0, 1}n)k → {0, 1}n and outputs a
new ciphertext ct′.

These algorithms satisfy the following:

1. Correctness: Let (·, sk) ← KeyGen(1λ), then ∀m ∈ {0, 1}n and uniformly sampled r ←$

{0, 1}λ, it holds that:
Pr [m← Dec (sk,Enc(sk,m; r))] = 1

1-2



2. IND-CPA Security: Let (·, sk) ← KeyGen(1λ), then ∀{m0,i,m1,i}i∈poly(λ) ∈ {0, 1}n, the
following two distributions are computationally indistinguishable:{

{Enc(sk,m0,i; ri)}i∈poly(λ); {ri}i∈poly(λ) ←$ {0, 1}λ
}

{
{Enc(sk,m1,i; ri)}i∈poly(λ); {ri}i∈poly(λ) ←$ {0, 1}λ

}
3. Re-randomization: Let (pk, sk) ← KeyGen(1λ), then ∀m ∈ {0, 1}n, and any uniformly

sampled r ←$ {0, 1}λ, the following two distributions are computationally indistinguishable:{
Refresh(pk, ct; r′); r ←$ {0, 1}λ

}
{
Enc(sk,Dec(sk, ct); r′); r ←$ {0, 1}λ

}
,

where ct← Enc(sk,m; r).

4. Linear Homomorphism: Let (pk, sk) ← KeyGen(1λ), then for any k ≥ 1, ∀{mi}i∈[k] ∈
{0, 1}n, any uniformly sampled {ri}i∈[k] ←$ {0, 1}λ, and any linear function f : ({0, 1}n)k →
{0, 1}n, it holds that

Pr [f(m1, . . . ,mk)← Dec (sk, LinFunc(pk, f, ct1, . . . , ctk))] = 1,

where {cti ← Enc(sk,mi; ri)}i∈[l].

Use (KeyGen,Enc,Dec,Refresh, Linfunc) to design an IND-CPA secure public-key encryp-
tion scheme (KeyGenPKE,EncPKE,DecPKE). Also prove IND-CPA security of your public
key encryption scheme.

4 Non-Interactive MPC

(10 Points) Let Alice and Bob be two parties with inputs a ∈ Zq and b ∈ Zq, respectively. They
wish to check if their inputs are equal, i.e., whether a = b. They want to do this while making
sure that they do not learn any other information about the other party’s input. In other words,
if a ̸= b, then Alice should not learn b and Bob should not learn a.

Let G be a cyclic group of prime order q with generator g. They run the following protocol:

• Alice samples a random value r ←$ Zq. It then computes X = gr and Y = gar. It sends
(X,Y ) to Bob.

• Bob computes Xb. It outputs 1 if Xb = Y , and 0 otherwise.

Explain why this protocol is not secure against semi-honest Bob.

1-3


	Private Set Intersection
	Pseudorandom Correlation Generator
	Homomorphic Encryption
	Non-Interactive MPC

