CS65500: Advanced Cryptography

Instructor: Aarushi Goel

Homework 6

Due: April 25; 2025 (11:59 PM)

1 Private Set Intersection

(20 Points) Recall the following PSI protocol discussed in class and formally prove that it satisfies semi-honest security with respect to both parties, Alice and Bob.

Setup. Alice has input $X = \{x_1, \ldots, x_m\}$. Bob has input $Y = \{y_1, \ldots, y_n\}$. Both parties agree on a group (\mathbb{G}, p, g) . Both parties agree on a hash function $H : \{0, 1\}^* \to \mathbb{G}$ modeled as a random oracle, which maps strings of arbitrary length into *random* group elements.

Alice \rightarrow Bob.

- 1. Alice picks a random number $\alpha \stackrel{\$}{\leftarrow} \mathbb{Z}_p$;
- 2. For each $i \in [m]$, Alice computes $a_i = H(x_i)^{\alpha}$;
- 3. Alice sends $A = \{a_1, \ldots, a_m\}$ to Bob;

$\mathbf{Bob} \rightarrow \mathbf{Alice.}$

- 1. Bob picks a random number $\beta \stackrel{\$}{\leftarrow} \mathbb{Z}_p$;
- 2. For each $j \in [n]$, Bob computes $b_j = H(y_j)^{\beta}$;
- 3. For each $i \in [m]$, Bob computes $c_i = a_i^{\beta}$.
- 4. Bob sends $B = \{b_1, \ldots, b_n\}$ and $C = \{c_1, \ldots, c_m\}$ to Alice;

Output Computation.

- 1. Initialize a set $Z = \emptyset$;
- 2. For each $j \in [n]$, Alice computes $d_j = b_j^{\alpha}$;
- 3. For each $i \in [m]$ such that there is a $j \in [n]$ such that $c_i = d_j$, Alice adds x_i to Z;
- 4. Alice computes and outputs Z.

2 Pseudorandom Correlation Generator

(15 Points) In class, we learned how to design a two-party pseudorandom correlation generator (PCG) for the VOLE correlation, where one party upon expansion of their seed obtains pseudorandom vectors \vec{u} and \vec{v} , and the other party upon expansion of their seed obtains a random scalar x and a pseudorandom vector \vec{w} , such that $\vec{u} \cdot x + \vec{v} = \vec{w}$. Describe how this construction can be adapted to generate a PCG for the following Beaver triple-style correlation: (\vec{a}, b, \vec{c}) , where b is a random scalar and \vec{a}, \vec{c} are pseudorandom vectors satisfying $\vec{a} \cdot b = \vec{c}$. Each party upon expansion of their seeds should obtain an additive secret sharing of \vec{a}, b , and \vec{c} . Argue correctness of your construction. You **do not** need to prove its security.

(**Hint:** Observe that in a VOLE correlation, the pair $-\vec{v}, \vec{w}$ can be interpreted as additive shares of $\vec{u} \cdot x$. Therefore, by letting $\vec{a} = \vec{u}$ and b = x, the PCG discussed in class already enables the parties to obtain additive shares of \vec{c} . The only remaining task is to modify this construction so that it also yields additive secret shares of b and \vec{a} – rather than having one party learn \vec{a} and the other learn b in the clear.)

3 Homomorphic Encryption

(20 points) Consider a special linearly homomorphic secret-key encryption scheme that satisfies the following definition.

Definition 1 For all $\lambda \in \mathbb{N}$, a CPA-secure special additively homomorphic secret-key encryption comprises of a tuple of PPT algorithms (KeyGen, Enc, Dec, Refresh, Linfunc) defined as follows:

- (pk, sk) ← KeyGen(1^λ): The key generation algorithm takes the security parameter 1^λ as input and outputs a public-key pk and a secret-key sk.
- ct ← Enc(sk, m; r): The encryption algorithm takes as input, the secret-key sk, a message m ∈ {0,1}ⁿ and a random string r ∈ {0,1}^λ, and outputs a ciphertext ct.
- *m* ← Dec(sk, ct): The decryption algorithm takes as input the secret-key sk and a ciphertext ct, and outputs a message m.
- ct' ← Refresh(pk, ct; r): The refresh algorithm takes as input the public key pk, a ciphertext ct and a random string r ∈ {0,1}^λ, and outputs a new ciphertext ct'.
- ct' ← LinFunc(pk, f, ct₁,..., ct_k) : This algorithm takes as input the public key pk, a list of k ≥ 1 ciphertexts ct₁,..., ct_k and a linear function f : ({0,1}ⁿ)^k → {0,1}ⁿ and outputs a new ciphertext ct'.

These algorithms satisfy the following:

1. Correctness: Let $(\cdot, \mathsf{sk}) \leftarrow \mathsf{KeyGen}(1^{\lambda})$, then $\forall m \in \{0, 1\}^n$ and uniformly sampled $r \leftarrow \{0, 1\}^{\lambda}$, it holds that:

$$\Pr\left[m \leftarrow \mathsf{Dec}\left(\mathsf{sk},\mathsf{Enc}(\mathsf{sk},m;r)\right)\right] = 1$$

2. **IND-CPA Security:** Let $(\cdot, \mathsf{sk}) \leftarrow \mathsf{KeyGen}(1^{\lambda})$, then $\forall \{m_{0,i}, m_{1,i}\}_{i \in \mathsf{poly}(\lambda)} \in \{0, 1\}^n$, the following two distributions are computationally indistinguishable:

$$\left\{ \{ \mathsf{Enc}(\mathsf{sk}, m_{0,i}; r_i) \}_{i \in \mathsf{poly}(\lambda)}; \{ r_i \}_{i \in \mathsf{poly}(\lambda)} \leftarrow \$ \{ 0, 1 \}^{\lambda} \right\}$$
$$\left\{ \{ \mathsf{Enc}(\mathsf{sk}, m_{1,i}; r_i) \}_{i \in \mathsf{poly}(\lambda)}; \{ r_i \}_{i \in \mathsf{poly}(\lambda)} \leftarrow \$ \{ 0, 1 \}^{\lambda} \right\}$$

3. **Re-randomization:** Let $(pk, sk) \leftarrow KeyGen(1^{\lambda})$, then $\forall m \in \{0, 1\}^n$, and any uniformly sampled $r \leftarrow \{0, 1\}^{\lambda}$, the following two distributions are computationally indistinguishable:

$$\left\{ \mathsf{Refresh}(\mathsf{pk}, ct; r'); r \leftarrow \$ \{0, 1\}^{\lambda} \right\}$$
$$\left\{ \mathsf{Enc}(\mathsf{sk}, \mathsf{Dec}(\mathsf{sk}, ct); r'); r \leftarrow \$ \{0, 1\}^{\lambda} \right\},$$

where $ct \leftarrow \mathsf{Enc}(\mathsf{sk}, m; r)$.

4. Linear Homomorphism: Let $(\mathsf{pk},\mathsf{sk}) \leftarrow \mathsf{KeyGen}(1^{\lambda})$, then for any $k \geq 1$, $\forall \{m_i\}_{i \in [k]} \in \{0,1\}^n$, any uniformly sampled $\{r_i\}_{i \in [k]} \leftarrow \{0,1\}^{\lambda}$, and any linear function $f: (\{0,1\}^n)^k \rightarrow \{0,1\}^n$, it holds that

 $\Pr[f(m_1,\ldots,m_k) \leftarrow \mathsf{Dec}(\mathsf{sk},\mathsf{LinFunc}(\mathsf{pk},f,ct_1,\ldots,ct_k))] = 1,$

where $\{ct_i \leftarrow \mathsf{Enc}(\mathsf{sk}, m_i; r_i)\}_{i \in [l]}$.

Use (KeyGen, Enc, Dec, Refresh, Linfunc) to design an IND-CPA secure public-key encryption scheme (KeyGen_{PKE}, Enc_{PKE}, Dec_{PKE}). Also prove IND-CPA security of your public key encryption scheme.

4 Non-Interactive MPC

(10 Points) Let Alice and Bob be two parties with inputs $a \in \mathbb{Z}_q$ and $b \in \mathbb{Z}_q$, respectively. They wish to check if their inputs are equal, i.e., whether a = b. They want to do this while making sure that they do not learn any other information about the other party's input. In other words, if $a \neq b$, then Alice should not learn b and Bob should not learn a.

Let \mathbb{G} be a cyclic group of prime order q with generator g. They run the following protocol:

- Alice samples a random value $r \leftarrow \mathbb{Z}_q$. It then computes $X = g^r$ and $Y = g^{ar}$. It sends (X, Y) to Bob.
- Bob computes X^b . It outputs 1 if $X^b = Y$, and 0 otherwise.

Explain why this protocol is not secure against semi-honest Bob.