CS65500: Advanced Cryptography Instructor: Aarushi Goel
Homework 6

Due: April 25; 2025 (11:59 PM)

1 Private Set Intersection

(20 Points) Recall the following PSI protocol discussed in class and formally prove that it
satisfies semi-honest security with respect to both parties, Alice and Bob.

Setup. Alice has input X = {x1,...,z,}. Bob has input Y = {y1,...,yn}. Both parties agree
on a group (G, p, g). Both parties agree on a hash function H : {0,1}* — G modeled as a random
oracle, which maps strings of arbitrary length into random group elements.

Alice — Bob.
1. Alice picks a random number « & L
.

2. For each i € [m], Alice computes a; = H(z;)%;

3. Alice sends A ={ay,...,an} to Bob;

Bob — Alice.
1. Bob picks a random number 3 & L

2. For each j € [n], Bob computes b; = H(y;)?;
B

3. For each i € [m], Bob computes ¢; = a; .

4. Bob sends B = {b1,...,b,} and C = {cy1,...,cn} to Alice;

Output Computation.
1. Initialize a set Z = 0;
2. For each j € [n], Alice computes d; = b;
3. For each i € [m] such that there is a j € [n] such that ¢; = d;, Alice adds z; to Z;

4. Alice computes and outputs Z.

1-1



2 Pseudorandom Correlation Generator

(15 Points) In class, we learned how to design a two-party pseudorandom correlation generator
(PCG) for the VOLE correlation, where one party upon expansion of their seed obtains pseudo-
random vectors 4 and ¥, and the other party upon expansion of their seed obtains a random scalar
z and a pseudorandom vector w, such that & - x + ¥ = W. Describe how this construction can be
adapted to generate a PCG for the following Beaver triple-style correlation: (d@,b,¢), where b is a
random scalar and @, ¢ are pseudorandom vectors satisfying @ - b = ¢. Each party upon expansion
of their seeds should obtain an additive secret sharing of @, b, and ¢. Argue correctness of your
construction. You do not need to prove its security.

(Hint: Observe that in a VOLE correlation, the pair —, @ can be interpreted as additive shares
of @ - x. Therefore, by letting @ = @ and b = z, the PCG discussed in class already enables the
parties to obtain additive shares of ¢. The only remaining task is to modify this construction so
that it also yields additive secret shares of b and @ — rather than having one party learn @ and the
other learn b in the clear.)

3 Homomorphic Encryption

(20 points) Consider a special linearly homomorphic secret-key encryption scheme that satisfies
the following definition.

Definition 1 For all A € N, a CPA-secure special additively homomorphic secret-key encryption
comprises of a tuple of PPT algorithms (KeyGen, Enc, Dec, Refresh, Linfunc) defined as follows:

o (pk,sk) < KeyGen(1*): The key generation algorithm takes the security parameter 1* as input
and outputs a public-key pk and a secret-key sk.

o ct + Enc(sk,m;r): The encryption algorithm takes as input, the secret-key sk, a message
m € {0,1}" and a random string r € {0, 1}A, and outputs a ciphertext ct.

e m < Dec(sk,ct): The decryption algorithm takes as input the secret-key sk and a ciphertext
ct, and outputs a message m.

o ct' « Refresh(pk,ct;r): The refresh algorithm takes as input the public key pk, a ciphertext
ct and a random string r € {0,1}*, and outputs a new ciphertext ct'.

e ct' «+ LinFunc(pk, f,ct1,...,cty) : This algorithm takes as input the public key pk, a list of
k > 1 ciphertexts cty,...,ct, and a linear function f : ({0,1}")¥ — {0,1}" and outputs a
new ciphertext ct’.

These algorithms satisfy the following:

1. Correctness: Let (-,sk) < KeyGen(1%), then ¥Ym € {0,1}" and uniformly sampled r <
{0, 1}, it holds that:
Pr [m < Dec (sk, Enc(sk,m;7))] =1

1-2



2. IND-CPA Security: Let (-,sk) < KeyGen(1*), then V{moi, m1i}icpoiy(n) € {0,1}", the
following two distributions are computationally indistinguishable:

{{Enc(5k7 mo,i; ri)}iEpon()\); {ri}iépoly()\) A {03 1}>\}

{{EnC(sk, m155 ) bicpaynys 17 Hicpoyny -5 {0,117

3. Re-randomization: Let (pk,sk) < KeyGen(1}), then Vm € {0,1}", and any uniformly
sampled r < {0,1}*, the following two distributions are computationally indistinguishable:

{Refresh(pk, ct;r');r +$ {0, 1}>‘}

{Enc(sk, Dec(sk, ct);r');r s {0, 1}’\} ,
where ct < Enc(sk, m;7).

4. Linear Homomorphism: Let (pk,sk) < KeyGen(1%), then for any k > 1, V{mi}icw €
0,1}", any uniformly sampled {r; ;e <5 {0,1}*, and any linear function f : ({0,1}")F —
€[k]
{0,1}™, it holds that

Pr[f(m1,...,my) < Dec (sk, LinFunc(pk, f,ct1,...,ctx))] = 1,
where {ct; < Enc(sk,m;; 1) }icp-

Use (KeyGen, Enc, Dec, Refresh, Linfunc) to design an IND-CPA secure public-key encryp-
tion scheme (KeyGenpyg, Encpke, Decpke). Also prove IND-CPA security of your public
key encryption scheme.

4 Non-Interactive MPC

(10 Points) Let Alice and Bob be two parties with inputs a € Z; and b € Z,, respectively. They
wish to check if their inputs are equal, i.e., whether a = b. They want to do this while making
sure that they do not learn any other information about the other party’s input. In other words,
if @ # b, then Alice should not learn b and Bob should not learn a.

Let G be a cyclic group of prime order ¢ with generator g. They run the following protocol:

o Alice samples a random value r <§ Z,. It then computes X = ¢" and Y = ¢*". It sends
(X,Y) to Bob.

e Bob computes X°. It outputs 1 if X® =Y, and 0 otherwise.

Explain why this protocol is not secure against semi-honest Bob.

1-3



	Private Set Intersection
	Pseudorandom Correlation Generator
	Homomorphic Encryption
	Non-Interactive MPC

