
Secure Multiparty Computation with
Free Branching

Aarushi Goel Mathias Hall-Andersen Aditya Hegde Abhishek Jain

EUROCRYPT 2022

Secure Multiparty Computation (MPC)

𝑥!

𝑥"

𝑥#𝑥$

𝑥%

MPC protocol for computing 𝑦 = 𝑓(𝑥!, 𝑥%, 𝑥$, 𝑥", 𝑥#)

Secure Multiparty Computation (MPC)

𝑥!

𝑥"

𝑥#𝑥$

𝑥%

MPC protocol for computing 𝑦 = 𝑓(𝑥!, 𝑥%, 𝑥$, 𝑥", 𝑥#)

Adversary learns nothing beyond the
output 𝑦

Limitation of Existing Efficient MPC Protocols

Existing protocols rely on circuit representation of functions

Limitation of Existing Efficient MPC Protocols

Communication complexity is linear in the size of circuit

Existing protocols rely on circuit representation of functions

Limitation of Existing Efficient MPC Protocols

Communication complexity is linear in the size of circuit

Existing protocols rely on circuit representation of functions

What about functions that don’t have an efficient circuit representation?

Example: Conditional Branches

𝑓(

𝑓)

𝑓*

ℎ𝑔

Example: Conditional Branches

𝑓(

𝑓)

𝑓*

ℎ𝑔

Circuit Representation: depends on ALL 3 branches

Example: Conditional Branches

𝑓(

𝑓)

𝑓*

ℎ𝑔
𝑥 𝑦, 3

Control
Value

ℎ(𝑓!(𝑦))

Active
Branch

Circuit Representation: depends on ALL 3 branches

Example: Conditional Branches

𝑓(

𝑓)

𝑓*

ℎ𝑔
𝑥 𝑦, 3

Control
Value

ℎ(𝑓!(𝑦))

Active
Branch

Circuit Representation:

Circuit Evaluation:

depends on ALL 3 branches

only depends on ONE branch

Example: Conditional Branches

𝑓(

𝑓)

𝑓*

ℎ𝑔
𝑥 𝑦, 3

Control
Value

ℎ(𝑓!(𝑦))

Active
Branch

Circuit Representation:

Circuit Evaluation:

depends on ALL 3 branches

only depends on ONE branch

Naïve use of existing MPC protocols will result in communication proportional to all 3 branches

Main Question

𝑓(

𝑓)

𝑓*

ℎ𝑔
𝑥 𝑦, 3

Control
Value

ℎ(𝑓!(𝑦))

Active
Branch

Circuit Representation:

Circuit Evaluation:

depends on ALL 3 branches

only depends on ONE branch

Naïve use of existing MPC protocols will result in communication proportional to all 3 branches

Can we design efficient MPC protocols for computing conditional branches,
where communication only depends on the size of a single branch?

Main Question

𝑓(

𝑓)

𝑓*

ℎ𝑔
𝑥 𝑦, 3

Control
Value

ℎ(𝑓!(𝑦))

Active
Branch

Circuit Representation:

Circuit Evaluation:

depends on ALL 3 branches

only depends on ONE branch

Naïve use of existing MPC protocols will result in communication proportional to all 3 branches

AKA

MPC with Free Branching

Can we design efficient MPC protocols for computing conditional branches,
where communication only depends on the size of a single branch?

MPC with Free Branching: Applications

Control flow instructions in computer programs

Collection of servers providing services that clients can pay and for and obliviously avail

Prior Work

Result No. of
Parties

Communication Security Rounds Type of Circuits

[HK20] 2 𝑂(|𝐶|) Semi-Honest Non-interactive Boolean

[HK21] 2 𝑂(|𝐶|) Semi-Honest Non-interactive Boolean

[HKP20,HKP21] 𝑛 𝑂(𝑘𝑛%|𝐶|) Semi-Honest Linear in depth Boolean

𝑘 = # branches 𝐶 = size of largest branch

Prior Work

Result No. of
Parties

Communication Security Rounds Type of Circuits

[HK20] 2 𝑂(|𝐶|) Semi-Honest Non-interactive Boolean

[HK21] 2 𝑂(|𝐶|) Semi-Honest Non-interactive Boolean

[HKP20,HKP21] 𝑛 𝑂(𝑘𝑛%|𝐶|) Semi-Honest Linear in depth Boolean

𝑘 = # branches

No 𝑛-party protocol where
communication only depends

on the size of one branch

𝐶 = size of largest branch

Prior Work

Result No. of
Parties

Communication Security Rounds Type of Circuits

[HK20] 2 𝑂(|𝐶|) Semi-Honest Non-interactive Boolean

[HK21] 2 𝑂(|𝐶|) Semi-Honest Non-interactive Boolean

[HKP20,HKP21] 𝑛 𝑂(𝑘𝑛%|𝐶|) Semi-Honest Linear in depth Boolean

𝑘 = # branches

No maliciously
secure protocol

𝐶 = size of largest branch

Prior Work

Result No. of
Parties

Communication Security Rounds Type of Circuits

[HK20] 2 𝑂(|𝐶|) Semi-Honest Non-interactive Boolean

[HK21] 2 𝑂(|𝐶|) Semi-Honest Non-interactive Boolean

[HKP20,HKP21] 𝑛 𝑂(𝑘𝑛%|𝐶|) Semi-Honest Linear in depth Boolean

𝑘 = # branches

No protocol for
arithmetic circuits

𝐶 = size of largest branch

Our Results

Result No. of
Parties

Communication Security Rounds Type of Circuits

[HK20] 2 𝑂(|𝐶|) Semi-Honest Non-interactive Boolean

[HK21] 2 𝑂(|𝐶|) Semi-Honest Non-interactive Boolean

[HKP20,HKP21] 𝑛 𝑂(𝑘𝑛%|𝐶|) Semi-Honest Linear in depth Boolean

Our Work 𝑛 𝑂(𝑛%|𝐶|) Semi-Honest Linear in depth Arithmetic

𝑘 = # branches 𝐶 = size of largest branch

Our Results

Result No. of
Parties

Communication Security Rounds Type of Circuits

[HK20] 2 𝑂(|𝐶|) Semi-Honest Non-interactive Boolean

[HK21] 2 𝑂(|𝐶|) Semi-Honest Non-interactive Boolean

[HKP20,HKP21] 𝑛 𝑂(𝑘𝑛%|𝐶|) Semi-Honest Linear in depth Boolean

Our Work 𝑛 𝑂(𝑛%|𝐶|) Semi-Honest Linear in depth Arithmetic

Our Work 𝑛 𝑂(𝑛%𝑠|𝐶|) Malicious Linear in depth Arithmetic

𝑘 = # branches 𝐶 = size of largest branch

Statistical security parameter

Our Results

Result No. of
Parties

Communication Security Rounds Type of Circuits

[HK20] 2 𝑂(|𝐶|) Semi-Honest Non-interactive Boolean

[HK21] 2 𝑂(|𝐶|) Semi-Honest Non-interactive Boolean

[HKP20,HKP21] 𝑛 𝑂(𝑘𝑛%|𝐶|) Semi-Honest Linear in depth Boolean

Our Work 𝑛 𝑂(𝑛%|𝐶|) Semi-Honest Linear in depth Arithmetic

Our Work 𝑛 𝑂(𝑛%𝑠|𝐶|) Malicious Linear in depth Arithmetic

Our Work 𝑛 𝑂(𝑛%|𝐶|) Semi-Honest Constant Boolean

𝑘 = # branches 𝐶 = size of largest branch

Our Results

Result No. of
Parties

Communication Security Rounds Type of Circuits

[HK20] 2 𝑂(|𝐶|) Semi-Honest Non-interactive Boolean

[HK21] 2 𝑂(|𝐶|) Semi-Honest Non-interactive Boolean

[HKP20,HKP21] 𝑛 𝑂(𝑘𝑛%|𝐶|) Semi-Honest Linear in depth Boolean

Our Work 𝑛 𝑂(𝑛%|𝐶|) Semi-Honest Linear in depth Arithmetic

Our Work 𝑛 𝑂(𝑛%𝑠|𝐶|) Malicious Linear in depth Arithmetic

Our Work 𝑛 𝑂(𝑛%|𝐶|) Semi-Honest Constant Boolean

𝑘 = # branches 𝐶 = size of largest branch

Main Ideas

Prior Work: High-Level Approach

Evaluate all branches and then filter the correct output

Prior Work: High-Level Approach

𝑔
𝑥

Evaluate all branches and then filter the correct output

Prior Work: High-Level Approach

𝑔
𝑥 𝑦

Multiplexer

3

Evaluate all branches and then filter the correct output

Prior Work: High-Level Approach

𝑓(

𝑓)

𝑓*

𝑔
𝑥 𝑦

Multiplexer

𝑦

3

Evaluate all branches and then filter the correct output

Prior Work: High-Level Approach

𝑓(

𝑓)

𝑓*

𝑔
𝑥 𝑦

Multiplexer De-Multiplexer

𝑦

𝑓"()

𝑓#()

𝑓!(𝑦)

3

Evaluate all branches and then filter the correct output

Prior Work: High-Level Approach

𝑓(

𝑓)

𝑓*

𝑔
𝑥 𝑦

Multiplexer De-Multiplexer

𝑦

𝑓!(𝑦)

𝑓"()

𝑓#()

𝑓!(𝑦)

3 3

Evaluate all branches and then filter the correct output

Prior Work: High-Level Approach

𝑓(

𝑓)

𝑓*

ℎ𝑔
𝑥 𝑦 ℎ(𝑓!(𝑦))

Multiplexer De-Multiplexer

𝑦

𝑓!(𝑦)

𝑓"()

𝑓#()

𝑓!(𝑦)

3 3

Evaluate all branches and then filter the correct output

Our Work: High-Level Approach

𝑓(

𝑓)

𝑓*

ℎ𝑔
𝑥 𝑦, 3 ℎ(𝑓!(𝑦))

Obliviously select the active branch and only evaluate that on correct inputs

Our Work: High-Level Approach

𝑓(

𝑓)

𝑓*

ℎ𝑔
𝑥 𝑦, 3 ℎ(𝑓!(𝑦))

Obliviously select the active branch and only evaluate that on correct inputs

Since the active branch must remain hidden, how does one compute on a hidden function?

Our Initial Observation: Similarities with PFE

𝑓
𝑥"

𝑥$

𝑥%

𝑥!

Private Function Evaluation
only 1 person knows the function!

Our Initial Observation: Similarities with PFE

𝑓
𝑥"

𝑥$

𝑥%

𝑥!

Private Function Evaluation
only 1 person knows the function!

𝑥"

𝑥$

𝑥%

𝑥!

MPC for Conditional Branches
No one knows the function!

𝑓 ∈ {𝑓(, 𝑓), 𝑓*}

Our Initial Observation: Similarities with PFE

𝑓
𝑥"

𝑥$

𝑥%

𝑥!

Private Function Evaluation
only 1 person knows the function!

𝑥"

𝑥$

𝑥%

𝑥!

MPC for Conditional Branches
No one knows the function!

𝑓 ∈ {𝑓(, 𝑓), 𝑓*}

Parties collectively hold information about the active branch

Talk Outline

Overview of the [MS13] PFE protocol

Our semi-honest non-constant round protocol for conditional branches

Performance Evaluation

Remarks on additional results

Talk Outline

Overview of the [MS13] PFE protocol

Our semi-honest non-constant round protocol for conditional branches

Performance Evaluation

Remarks on additional results

PFE: How to Hide Circuit Topology? [MS13]

PFE: How to Hide Circuit Topology? [MS13]

Gate 9
(+)

Gate 8
(×)

Gate 7
(+)

Gate 4
(+)

Gate 5
(×)

Gate 6
(×)

Gate 1
(×)

Gate 2
(×)

Gate 3
(+)

Hide wire configurations

PFE: How to Hide Circuit Topology? [MS13]

Gate 9
(+)

Gate 8
(×)

Gate 7
(+)

Gate 4
(+)

Gate 5
(×)

Gate 6
(×)

Gate 1
(×)

Gate 2
(×)

Gate 3
(+)

Gate 9
(+)

Gate 8
(×)

Gate 7
(+)

Gate 4
(+)

Gate 5
(×)

Gate 6
(×)

Gate 1
(×)

Gate 2
(×)

Gate 3
(+)

Hide wire configurations Hide gate functions

PFE: Hiding Gate Functions [MS13]

𝑓 𝑥% 𝑥$ 𝑥"𝑥!

PFE: Hiding Gate Functions [MS13]

𝑓 𝑥% 𝑥$ 𝑥"𝑥!

• Let 𝑡𝑦𝑝𝑒$ = 0: if 𝑔 is a multiplication gate
• Let 𝑡𝑦𝑝𝑒$ = 1: if 𝑔 is an addition gate

For every gate 𝑔:

PFE: Hiding Gate Functions [MS13]

𝑓 𝑥% 𝑥$ 𝑥"𝑥!

• Let 𝑡𝑦𝑝𝑒$ = 0: if 𝑔 is a multiplication gate
• Let 𝑡𝑦𝑝𝑒$ = 1: if 𝑔 is an addition gate

Secret share 𝑡𝑦𝑝𝑒&

For every gate 𝑔:

PFE: Hiding Gate Functions [MS13]

𝑓 𝑥% 𝑥$ 𝑥"𝑥!

• Let 𝑡𝑦𝑝𝑒$ = 0: if 𝑔 is a multiplication gate
• Let 𝑡𝑦𝑝𝑒$ = 1: if 𝑔 is an addition gate

Secret share 𝑡𝑦𝑝𝑒&

Given shares 𝐿$, 𝑅$ of left and right input wires, compute

𝑡𝑦𝑝𝑒$. 𝐿$. 𝑅$ + (1 − 𝑡𝑦𝑝𝑒$). 𝐿$ + 𝑅$

For every gate 𝑔:

PFE: Hiding Gate Functions [MS13]

𝑓 𝑥% 𝑥$ 𝑥"𝑥!

• Let 𝑡𝑦𝑝𝑒$ = 0: if 𝑔 is a multiplication gate
• Let 𝑡𝑦𝑝𝑒$ = 1: if 𝑔 is an addition gate

Secret share 𝑡𝑦𝑝𝑒&

Given shares 𝐿$, 𝑅$ of left and right input wires, compute

𝑡𝑦𝑝𝑒$. 𝐿$. 𝑅$ + (1 − 𝑡𝑦𝑝𝑒$). 𝐿$ + 𝑅$

For every gate 𝑔:

Compute using an MPC that can operate
over shares!

PFE: Hiding Gate Functions [MS13]

𝑓 𝑥% 𝑥$ 𝑥"𝑥!

• Let 𝑡𝑦𝑝𝑒$ = 0: if 𝑔 is a multiplication gate
• Let 𝑡𝑦𝑝𝑒$ = 1: if 𝑔 is an addition gate

Secret share 𝑡𝑦𝑝𝑒&

Given shares 𝐿$, 𝑅$ of left and right input wires, compute

𝑡𝑦𝑝𝑒$. 𝐿$. 𝑅$ + (1 − 𝑡𝑦𝑝𝑒$). 𝐿$ + 𝑅$

For every gate 𝑔:

How to compute this
without knowing

wire configurations?

Compute using an MPC that can operate
over shares!

PFE: Hiding Wire Configuration [MS13]

𝑓 𝑥% 𝑥$ 𝑥"𝑥!

PFE: Hiding Wire Configuration [MS13]

𝑓 𝑥% 𝑥$ 𝑥"𝑥!

Gate 3
(+)

Gate 2
(×)

Gate 1
(×)

Gate 4
(+)

Gate 5
(×)

Pre-Processing Phase

PFE: Hiding Wire Configuration [MS13]

𝑓 𝑥% 𝑥$ 𝑥"𝑥!

Gate 3
(+)

Gate 2
(×)

Gate 1
(×)

1 2 3 4 5 6

Gate 4
(+)

Gate 5
(×)

7 8
9

10

Assign an incoming label
and an outgoing label

Pre-Processing Phase

For every wire 𝑤:

1

PFE: Hiding Wire Configuration [MS13]

𝑓 𝑥% 𝑥$ 𝑥"𝑥!

Gate 3
(+)

Gate 2
(×)

Gate 1
(×)

1 2

1 2

3 4

3 4

5 6

5 6

Gate 4
(+)

Gate 5
(×)

7

7 8
9

10

8
9

10

Assign an incoming label
and an outgoing label

Pre-Processing Phase

For every wire 𝑤:

1

PFE: Hiding Wire Configuration [MS13]

𝑓 𝑥% 𝑥$ 𝑥"𝑥!

Gate 3
(+)

Gate 2
(×)

Gate 1
(×)

1 2

1 2

3 4

3 4

5 6

5 6

Gate 4
(+)

Gate 5
(×)

7

7 8
9

10

8
9

10

Assign an incoming label
and an outgoing label

Pre-Processing Phase

For every wire 𝑤:

Compute a mapping:
𝜋: 𝑖𝑛 → 𝑜𝑢𝑡

1

2

PFE: Hiding Wire Configuration [MS13]

𝑓 𝑥% 𝑥$ 𝑥"𝑥!

Gate 3
(+)

Gate 2
(×)

Gate 1
(×)

1 2

1 2

3 4

3 4

5 6

5 6

Gate 4
(+)

Gate 5
(×)

7

7 8
9

10

8
9

10

Share random masks:
𝑖𝑚𝑎𝑠𝑘' , [𝑜𝑚𝑎𝑠𝑘']

3
Assign an incoming label

and an outgoing label

Pre-Processing Phase

For every wire 𝑤:

Compute a mapping:
𝜋: 𝑖𝑛 → 𝑜𝑢𝑡

1

2

PFE: Hiding Wire Configuration [MS13]

𝑓 𝑥% 𝑥$ 𝑥"𝑥!

Gate 3
(+)

Gate 2
(×)

Gate 1
(×)

1 2

1 2

3 4

3 4

5 6

5 6

Gate 4
(+)

Gate 5
(×)

7

7 8
9

10

8
9

10

Assign an incoming label
and an outgoing label

Pre-Processing Phase

For every wire 𝑤:

Compute a mapping:
𝜋: 𝑖𝑛 → 𝑜𝑢𝑡

1

2

Share random masks:
𝑖𝑚𝑎𝑠𝑘' , [𝑜𝑚𝑎𝑠𝑘']

3

PFE: Hiding Wire Configuration [MS13]

𝑓 𝑥% 𝑥$ 𝑥"𝑥!

Gate 3
(+)

Gate 2
(×)

Gate 1
(×)

1 2

1 2

3 4

3 4

5 6

5 6

Gate 4
(+)

Gate 5
(×)

7

7 8
9

10

8
9

10

function holder learns:
Δ' = 𝑖𝑚𝑎𝑠𝑘' − 𝑜𝑚𝑎𝑠𝑘((')

4

Assign an incoming label
and an outgoing label

Pre-Processing Phase

For every wire 𝑤:

Compute a mapping:
𝜋: 𝑖𝑛 → 𝑜𝑢𝑡

1

2

Share random masks:
𝑖𝑚𝑎𝑠𝑘' , [𝑜𝑚𝑎𝑠𝑘']

3

PFE: Hiding Wire Configuration [MS13]

𝑓 𝑥% 𝑥$ 𝑥"𝑥!

Online Phase

PFE: Hiding Wire Configuration [MS13]

𝑓 𝑥% 𝑥$ 𝑥"𝑥!

Online Phase

For every gate 𝑔:

Gate 𝑔

a

𝜋(𝑎) 𝜋(𝑏)

b

c

𝑧+

𝑧, 𝑧-

Incoming label

Outgoing label

Actual wire values

PFE: Hiding Wire Configuration [MS13]

𝑓 𝑥% 𝑥$ 𝑥"𝑥!

Online Phase

For every gate 𝑔:

Gate 𝑔

a

𝜋(𝑎) 𝜋(𝑏)

b

c

𝑧+

𝑧, 𝑧-

Incoming label

Outgoing label

Actual wire values

After computing 𝑔

PFE: Hiding Wire Configuration [MS13]

𝑓 𝑥% 𝑥$ 𝑥"𝑥!

Online Phase

For every gate 𝑔:

Compute [𝑢+] = [𝑧+] + [𝑜𝑚𝑎𝑠𝑘+]
and Reconstruct 𝑢+

Gate 𝑔

a

𝜋(𝑎) 𝜋(𝑏)

b

c

𝑧+

𝑧, 𝑧-

Incoming label

Outgoing label

Actual wire values

After computing 𝑔

PFE: Hiding Wire Configuration [MS13]

𝑓 𝑥% 𝑥$ 𝑥"𝑥!

Online Phase

For every gate 𝑔:

Compute [𝑢+] = [𝑧+] + [𝑜𝑚𝑎𝑠𝑘+]
and Reconstruct 𝑢+

Gate 𝑔

a

𝜋(𝑎) 𝜋(𝑏)

b

c

𝑧+

𝑧, 𝑧-

Incoming label

Outgoing label

Actual wire values

For computing 𝑔

After computing 𝑔

PFE: Hiding Wire Configuration [MS13]

𝑓 𝑥% 𝑥$ 𝑥"𝑥!

Online Phase

For every gate 𝑔:

Compute [𝑢+] = [𝑧+] + [𝑜𝑚𝑎𝑠𝑘+]
and Reconstruct 𝑢+

Gate 𝑔

a

𝜋(𝑎) 𝜋(𝑏)

b

c

𝑧+

𝑧, 𝑧-

Incoming label

Outgoing label

Actual wire values

Compute and send
𝐴 = 𝑢((,) + ∆,
𝐵 = 𝑢((-) + ∆-

For computing 𝑔

After computing 𝑔

PFE: Hiding Wire Configuration [MS13]

𝑓 𝑥% 𝑥$ 𝑥"𝑥!

Online Phase

For every gate 𝑔:

Compute [𝑢+] = [𝑧+] + [𝑜𝑚𝑎𝑠𝑘+]
and Reconstruct 𝑢+

Compute and send
𝐴 = 𝑢((,) + ∆,
𝐵 = 𝑢((-) + ∆-

Compute
[𝑧,] = 𝐴 − [𝑖𝑚𝑎𝑠𝑘,]
𝑧- = 𝐵 − [𝑖𝑚𝑎𝑠𝑘-]

Gate 𝑔

a

𝜋(𝑎) 𝜋(𝑏)

b

c

𝑧+

𝑧, 𝑧-

Incoming label

Outgoing label

Actual wire values

After computing 𝑔

For computing 𝑔

Talk Outline

Overview of the [MS13] PFE protocol

Our semi-honest non-constant round protocol for conditional branches

Performance Evaluation

Remarks on additional results

𝑥% 𝑥$ 𝑥"𝑥!

Conditional Branches: Hiding Gate Functions

Let’s assume parties have secret sharing of
unary representation of 𝛼, i.e., 𝑏! , … , 𝑏.

Index of the active branch

𝑥% 𝑥$ 𝑥"𝑥!

𝑡𝑦𝑝𝑒& = 𝑏! . 𝑡𝑦𝑝𝑒!,&+⋯+ 𝑏. . 𝑡𝑦𝑝𝑒.,&For every gate 𝑔:

Conditional Branches: Hiding Gate Functions

Let’s assume parties have secret sharing of
unary representation of 𝛼, i.e., 𝑏! , … , 𝑏.

Type of gate 𝑔 in Branch 1

𝑥% 𝑥$ 𝑥"𝑥!

𝑡𝑦𝑝𝑒& = 𝑏! . 𝑡𝑦𝑝𝑒!,&+⋯+ 𝑏. . 𝑡𝑦𝑝𝑒.,&For every gate 𝑔:

Conditional Branches: Hiding Gate Functions

Let’s assume parties have secret sharing of
unary representation of 𝛼, i.e., 𝑏! , … , 𝑏.

Given shares 𝐿& , 𝑅& of left and right input wires, compute

𝑡𝑦𝑝𝑒& . 𝐿& . 𝑅& + (1 − 𝑡𝑦𝑝𝑒&). 𝐿& + 𝑅&

Conditional Branches: Hiding Wire Configuration

Pre-Processing Phase
𝑥% 𝑥$ 𝑥"𝑥!

Conditional Branches: Hiding Wire Configuration

Assign an incoming label and an outgoing label

Pre-Processing Phase

For every wire 𝑤 in every branch 𝑖:

𝑥% 𝑥$ 𝑥"𝑥!

Conditional Branches: Hiding Wire Configuration

Assign an incoming label and an outgoing label

Pre-Processing Phase

For every wire 𝑤 in every branch 𝑖:

Compute mappings: 𝜋0: 𝑖𝑛 → 𝑜𝑢𝑡For every branch 𝑖:

𝑥% 𝑥$ 𝑥"𝑥!

Conditional Branches: Hiding Wire Configuration

Assign an incoming label and an outgoing label

Pre-Processing Phase

For every wire 𝑤 in every branch 𝑖:

Compute mappings: 𝜋0: 𝑖𝑛 → 𝑜𝑢𝑡

Share a set of random masks: 𝑖𝑚𝑎𝑠𝑘' , [𝑜𝑚𝑎𝑠𝑘']

For every branch 𝑖:

𝑥% 𝑥$ 𝑥"𝑥!

[𝑜𝑚𝑎𝑠𝑘(! '] = [𝑏!][𝑜𝑚𝑎𝑠𝑘(" '] + ⋯+ [𝑏!][𝑜𝑚𝑎𝑠𝑘(" ']

Conditional Branches: Hiding Wire Configuration

Assign an incoming label and an outgoing label

Pre-Processing Phase

For every wire 𝑤 in every branch 𝑖:

Compute mappings: 𝜋0: 𝑖𝑛 → 𝑜𝑢𝑡

Share a set of random masks: 𝑖𝑚𝑎𝑠𝑘' , [𝑜𝑚𝑎𝑠𝑘']

For every branch 𝑖:

𝑥% 𝑥$ 𝑥"𝑥!

[𝑜𝑚𝑎𝑠𝑘(! '] = [𝑏!][𝑜𝑚𝑎𝑠𝑘(" '] + ⋯+ [𝑏!][𝑜𝑚𝑎𝑠𝑘(" ']

Conditional Branches: Hiding Wire Configuration

Assign an incoming label and an outgoing label

Pre-Processing Phase

For every wire 𝑤 in every branch 𝑖:

Compute mappings: 𝜋0: 𝑖𝑛 → 𝑜𝑢𝑡

Share a set of random masks: 𝑖𝑚𝑎𝑠𝑘' , [𝑜𝑚𝑎𝑠𝑘']

For every branch 𝑖:

[Δ'] = [𝑖𝑚𝑎𝑠𝑘'] − [𝑜𝑚𝑎𝑠𝑘(! ']

𝑥% 𝑥$ 𝑥"𝑥!

(∆ values for the active branch)

[𝑜𝑚𝑎𝑠𝑘(! '] = [𝑏!][𝑜𝑚𝑎𝑠𝑘(" '] + ⋯+ [𝑏!][𝑜𝑚𝑎𝑠𝑘(" ']

Conditional Branches: Hiding Wire Configuration

Assign an incoming label and an outgoing label

Pre-Processing Phase

For every wire 𝑤 in every branch 𝑖:

Compute mappings: 𝜋0: 𝑖𝑛 → 𝑜𝑢𝑡

Share a set of random masks: 𝑖𝑚𝑎𝑠𝑘' , [𝑜𝑚𝑎𝑠𝑘']

For every branch 𝑖:

[Δ'] = [𝑖𝑚𝑎𝑠𝑘'] − [𝑜𝑚𝑎𝑠𝑘(! ']

This computation depends on
the size of all branches

𝑥% 𝑥$ 𝑥"𝑥!

[𝑜𝑚𝑎𝑠𝑘(! '] = [𝑏!][𝑜𝑚𝑎𝑠𝑘(" '] + ⋯+ [𝑏!][𝑜𝑚𝑎𝑠𝑘(" ']

Conditional Branches: Hiding Wire Configuration

Assign an incoming label and an outgoing label

Pre-Processing Phase

For every wire 𝑤 in every branch 𝑖:

Compute mappings: 𝜋0: 𝑖𝑛 → 𝑜𝑢𝑡

Share a set of random masks: 𝑖𝑚𝑎𝑠𝑘' , [𝑜𝑚𝑎𝑠𝑘']

For every branch 𝑖:

[Δ'] = [𝑖𝑚𝑎𝑠𝑘'] − [𝑜𝑚𝑎𝑠𝑘(! ']

This computation depends on
the size of all branches

𝑥% 𝑥$ 𝑥"𝑥!

How can we compute this efficiently?

Oblivious Inner Product
[𝑜𝑚𝑎𝑠𝑘%% &] = [𝑏"][𝑜𝑚𝑎𝑠𝑘%& &] + ⋯+ [𝑏"][𝑜𝑚𝑎𝑠𝑘%& &]

Oblivious Inner Product
[𝑜𝑚𝑎𝑠𝑘%% &] = [𝑏"][𝑜𝑚𝑎𝑠𝑘%& &] + ⋯+ [𝑏"][𝑜𝑚𝑎𝑠𝑘%& &]

Using Threshold Linearly Homomorphic Encryption!

Oblivious Inner Product
[𝑜𝑚𝑎𝑠𝑘%% &] = [𝑏"][𝑜𝑚𝑎𝑠𝑘%& &] + ⋯+ [𝑏"][𝑜𝑚𝑎𝑠𝑘%& &]

Encrypt 𝑏!, … , 𝑏.:

Using Threshold Linearly Homomorphic Encryption!

< 𝑏! >
12+

𝑏! , … , < 𝑏. >
12+

[𝑏.]

Oblivious Inner Product
[𝑜𝑚𝑎𝑠𝑘%% &] = [𝑏"][𝑜𝑚𝑎𝑠𝑘%& &] + ⋯+ [𝑏"][𝑜𝑚𝑎𝑠𝑘%& &]

Encrypt 𝑏!, … , 𝑏.:

Each party 𝑝 computes
for every wire 𝑤:

Using Threshold Linearly Homomorphic Encryption!

< 𝑏! >
12+

𝑏! , … , < 𝑏. >
12+

[𝑏.]

< 𝑜𝑚𝑎𝑠𝑘(! '
(3) >= < 𝑏! >. [𝑜𝑚𝑎𝑠𝑘(" '](3) +⋯+< 𝑏. >. [𝑜𝑚𝑎𝑠𝑘(# '](3)

Oblivious Inner Product
[𝑜𝑚𝑎𝑠𝑘%% &] = [𝑏"][𝑜𝑚𝑎𝑠𝑘%& &] + ⋯+ [𝑏"][𝑜𝑚𝑎𝑠𝑘%& &]

Encrypt 𝑏!, … , 𝑏.:

Each party 𝑝 computes
for every wire 𝑤:

Aggregate:

Using Threshold Linearly Homomorphic Encryption!

< 𝑏! >
12+

𝑏! , … , < 𝑏. >
12+

[𝑏.]

< 𝑜𝑚𝑎𝑠𝑘(! '
(3) >= < 𝑏! >. [𝑜𝑚𝑎𝑠𝑘(" '](3) +⋯+< 𝑏. >. [𝑜𝑚𝑎𝑠𝑘(# '](3)

< 𝑜𝑚𝑎𝑠𝑘(! ' >= Q
3

< 𝑜𝑚𝑎𝑠𝑘(! '
(3) >

Oblivious Inner Product
[𝑜𝑚𝑎𝑠𝑘%% &] = [𝑏"][𝑜𝑚𝑎𝑠𝑘%& &] + ⋯+ [𝑏"][𝑜𝑚𝑎𝑠𝑘%& &]

Encrypt 𝑏!, … , 𝑏.: < 𝑏! >
12+

𝑏! , … , < 𝑏. >
12+

[𝑏.]

Each party 𝑝 computes
for every wire 𝑤: < 𝑜𝑚𝑎𝑠𝑘(! '

(3) >= < 𝑏! >. [𝑜𝑚𝑎𝑠𝑘(" '](3) +⋯+< 𝑏. >. [𝑜𝑚𝑎𝑠𝑘(# '](3)

Aggregate: < 𝑜𝑚𝑎𝑠𝑘(! ' >= Q
3

< 𝑜𝑚𝑎𝑠𝑘(! '
(3) >

Decrypt mask to shares [𝑜𝑚𝑎𝑠𝑘(! ']
45+

< 𝑜𝑚𝑎𝑠𝑘(! ' >

Using Threshold Linearly Homomorphic Encryption!

Communication only depends on the size of one branch

𝑥% 𝑥$ 𝑥"𝑥!
Online Phase

Conditional Branches: Hiding Wire Configuration

𝑥% 𝑥$ 𝑥"𝑥!
Online Phase

For every gate 𝑔:

Gate 𝑔

a

𝜋(𝑎) 𝜋(𝑏)

b

c

𝑧+

𝑧, 𝑧-

Incoming label

Outgoing label

Actual wire values

Conditional Branches: Hiding Wire Configuration

𝑥% 𝑥$ 𝑥"𝑥!
Online Phase

For every gate 𝑔:

Compute [𝑢+] = [𝑧+] + [𝑜𝑚𝑎𝑠𝑘+]
and Reconstruct 𝑢+

After computing 𝑔

Conditional Branches: Hiding Wire Configuration

Gate 𝑔

a

𝜋(𝑎) 𝜋(𝑏)

b

c

𝑧+

𝑧, 𝑧-

Incoming label

Outgoing label

Actual wire values

𝑥% 𝑥$ 𝑥"𝑥!
Online Phase

For every gate 𝑔:

Compute [𝑢+] = [𝑧+] + [𝑜𝑚𝑎𝑠𝑘+]
and Reconstruct 𝑢+

Gate 𝑔

a

𝜋(𝑎) 𝜋(𝑏)

b

c

𝑧+

𝑧, 𝑧-

Incoming label

Outgoing label

Actual wire values

After computing 𝑔

For computing 𝑔

Conditional Branches: Hiding Wire Configuration

𝑥% 𝑥$ 𝑥"𝑥!
Online Phase

For every gate 𝑔:

Compute [𝑢+] = [𝑧+] + [𝑜𝑚𝑎𝑠𝑘+]
and Reconstruct 𝑢+

Compute
𝐴 = 𝑢((,) + [∆,]
𝐵 = 𝑢((-) + [∆-]

Gate 𝑔

a

𝜋(𝑎) 𝜋(𝑏)

b

c

𝑧+

𝑧, 𝑧-

Incoming label

Outgoing label

Actual wire values

After computing 𝑔

For computing 𝑔

Conditional Branches: Hiding Wire Configuration

𝑥% 𝑥$ 𝑥"𝑥!
Online Phase

For every gate 𝑔:

Compute [𝑢+] = [𝑧+] + [𝑜𝑚𝑎𝑠𝑘+]
and Reconstruct 𝑢+

Compute
𝐴 = 𝑢((,) + [∆,]
𝐵 = 𝑢((-) + [∆-]

Compute
[𝑧,] = 𝐴 − [𝑖𝑚𝑎𝑠𝑘,]
𝑧- = 𝐵 − [𝑖𝑚𝑎𝑠𝑘-]

Gate 𝑔

a

𝜋(𝑎) 𝜋(𝑏)

b

c

𝑧+

𝑧, 𝑧-

Incoming label

Outgoing label

Actual wire values

After computing 𝑔

For computing 𝑔

Conditional Branches: Hiding Wire Configuration

Talk Outline

Overview of the [MS13] PFE protocol

Our semi-honest non-constant round protocol for conditional branches

Performance Evaluation

Remarks on additional results

Comparing with MASCOT (𝑂(𝑛!|𝐶|) Protocol)

Comparing with MASCOT (𝑂(𝑛!|𝐶|) Protocol)
We use an implementation of semi-honest MASCOT from the MP-SPDZ library

Comparing with MASCOT (𝑂(𝑛!|𝐶|) Protocol)

Communication

3 parties, 2!6 gates in each branch

We use an implementation of semi-honest MASCOT from the MP-SPDZ library

Comparing with MASCOT (𝑂(𝑛!|𝐶|) Protocol)

Communication Run-Time

3 parties, 2!6 gates in each branch

We use an implementation of semi-honest MASCOT from the MP-SPDZ library

Comparing with [CDN01] (𝑂(𝑛|𝐶|) Protocol)

Comparing with [CDN01] (𝑂(𝑛|𝐶|) Protocol)
We implement the [CDN01] Protocol

Comparing with [CDN01] (𝑂(𝑛|𝐶|) Protocol)

Communication

3 parties, 2!6 gates in each branch

We implement the [CDN01] Protocol

Comparing with [CDN01] (𝑂(𝑛|𝐶|) Protocol)

Communication Run-Time

3 parties, 2!6 gates in each branch

We implement the [CDN01] Protocol

Talk Outline

Overview of the [MS13] PFE protocol

Our semi-honest non-constant round protocol for conditional branches

Performance Evaluation

Remarks on additional results

Additional Results

This protocol can be extended to malicious security

Additional Results

This protocol can be extended to malicious security
Incurs additional multiplicative overhead dependent on the statistical

security parameter

Additional Results

This protocol can be extended to malicious security
Incurs additional multiplicative overhead dependent on the statistical

security parameter

A constant round variant based on multi-party garbling

Additional Results

This protocol can be extended to malicious security
Incurs additional multiplicative overhead dependent on the statistical

security parameter

A constant round variant based on multi-party garbling

Naïve multi-party garbling using the above approach results in non-
black box use of cryptography

Additional Results

This protocol can be extended to malicious security
Incurs additional multiplicative overhead dependent on the statistical

security parameter

A constant round variant based on multi-party garbling

Naïve multi-party garbling using the above approach results in non-
black box use of cryptography

We present an alternate solution using the linearly key-homomorphic
PRFs based garbling approach from [BLO17]

Conclusion

A multi-party protocol for securely computing conditional branches, where
the total communication only depends on the size of the largest branch

Extensions to malicious security and a semi-honest constant round protocol

Thank You!

