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Communication complexity is linear in the size of circuit

Existing protocols rely on circuit representation of functions

What about functions that don’t have an efficient circuit representation?
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Circuit Representation:

Circuit Evaluation:

depends on ALL 3 branches

only depends on ONE branch

Naïve use of existing MPC protocols will result in communication proportional to all 3 branches

AKA

MPC with Free Branching

Can we design efficient MPC protocols for computing conditional branches, 
where communication only depends on the size of a single branch?



MPC with Free Branching: Applications

Control flow instructions in computer programs

Collection of servers providing services that clients can pay and for and obliviously avail
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ℎ𝑔
𝑥 𝑦, 3 ℎ(𝑓!(𝑦))

Obliviously select the active branch and only evaluate that on correct inputs

Since the active branch must remain hidden, how does one compute on a hidden function?
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𝑥!

MPC for Conditional Branches
No one knows the function!

𝑓 ∈ {𝑓(, 𝑓), 𝑓*}

Parties collectively hold information about the active branch
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Conditional Branches: Hiding Gate Functions 
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unary representation of 𝛼, i.e., 𝑏! , … , 𝑏.

Given shares 𝐿& , 𝑅& of left and right input wires, compute
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For every wire 𝑤 in every branch 𝑖:
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Share a set of random masks: 𝑖𝑚𝑎𝑠𝑘' , [𝑜𝑚𝑎𝑠𝑘']
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Assign an incoming label and an outgoing label

Pre-Processing Phase

For every wire 𝑤 in every branch 𝑖:

Compute mappings:  𝜋0: 𝑖𝑛 → 𝑜𝑢𝑡

Share a set of random masks: 𝑖𝑚𝑎𝑠𝑘' , [𝑜𝑚𝑎𝑠𝑘']

For every branch 𝑖:

[Δ'] = [𝑖𝑚𝑎𝑠𝑘'] − [𝑜𝑚𝑎𝑠𝑘(! ' ]

𝑥% 𝑥$ 𝑥"𝑥!

(∆ values for the active branch)
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For every wire 𝑤 in every branch 𝑖:

Compute mappings:  𝜋0: 𝑖𝑛 → 𝑜𝑢𝑡

Share a set of random masks: 𝑖𝑚𝑎𝑠𝑘' , [𝑜𝑚𝑎𝑠𝑘']

For every branch 𝑖:
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This computation depends on 
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𝑥% 𝑥$ 𝑥"𝑥!



[𝑜𝑚𝑎𝑠𝑘(! ' ] = [𝑏!][𝑜𝑚𝑎𝑠𝑘(" ' ] + ⋯+ [𝑏!][𝑜𝑚𝑎𝑠𝑘(" ' ]

Conditional Branches: Hiding Wire Configuration

Assign an incoming label and an outgoing label

Pre-Processing Phase

For every wire 𝑤 in every branch 𝑖:

Compute mappings:  𝜋0: 𝑖𝑛 → 𝑜𝑢𝑡

Share a set of random masks: 𝑖𝑚𝑎𝑠𝑘' , [𝑜𝑚𝑎𝑠𝑘']

For every branch 𝑖:
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𝑥% 𝑥$ 𝑥"𝑥!

How can we compute this efficiently?
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Encrypt 𝑏!, … , 𝑏.: < 𝑏! >
12+

𝑏! , … , < 𝑏. >
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[𝑏.]

Each party 𝑝 computes 
for every wire 𝑤: < 𝑜𝑚𝑎𝑠𝑘(! '
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3
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Decrypt mask to shares [𝑜𝑚𝑎𝑠𝑘(! ' ]
45+

< 𝑜𝑚𝑎𝑠𝑘(! ' >

Using Threshold Linearly Homomorphic Encryption!

Communication only depends on the size of one branch
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For every gate 𝑔:

Compute [𝑢+] = [𝑧+] + [𝑜𝑚𝑎𝑠𝑘+]
and Reconstruct 𝑢+

Compute
𝐴 = 𝑢((,) + [∆,]
𝐵 = 𝑢((-) + [∆-]
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𝑧- = 𝐵 − [𝑖𝑚𝑎𝑠𝑘-]
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𝑧, 𝑧-
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For computing 𝑔
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Comparing with [CDN01] (𝑂(𝑛|𝐶|) Protocol)

Communication Run-Time

3 parties, 2!6 gates in each branch

We implement the [CDN01] Protocol
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Additional Results

This protocol can be extended to malicious security
Incurs additional multiplicative overhead dependent on the statistical 

security parameter

A constant round variant based on multi-party garbling

Naïve multi-party garbling using the above approach results in non-
black box use of cryptography

We present an alternate solution using the linearly key-homomorphic 
PRFs based garbling approach from [BLO17]



Conclusion

A multi-party protocol for securely computing conditional branches, where 
the total communication only depends on the size of the largest branch

Extensions to malicious security and a semi-honest constant round protocol



Thank You!


