Secure Multiparty Computation with Free Branching

Aarushi Goel Mathias Hall-Andersen Aditya Hegde Abhishek Jain

EUROCRYPT 2022

Secure Multiparty Computation (MPC)

MPC protocol for computing $y = f(x_1, x_2, x_3, x_4, x_5)$

Secure Multiparty Computation (MPC)

Adversary learns nothing beyond the output y

MPC protocol for computing $y = f(x_1, x_2, x_3, x_4, x_5)$

Limitation of Existing Efficient MPC Protocols

Existing protocols rely on circuit representation of functions

Limitation of Existing Efficient MPC Protocols

Existing protocols rely on circuit representation of functions

Communication complexity is linear in the size of circuit

Limitation of Existing Efficient MPC Protocols

Existing protocols rely on circuit representation of functions

Communication complexity is linear in the size of circuit

What about functions that don't have an efficient circuit representation?

Circuit Representation:

depends on ALL 3 branches

Naïve use of existing MPC protocols will result in communication proportional to all 3 branches

Main Question

Circuit Representation: de

depends on ALL 3 branches

Can we design efficient MPC protocols for computing conditional branches, where communication only depends on the size of a single branch?

Naïve use of existing MPC protocols will result in communication proportional to all 3 branches

Main Question

Circuit Representation: deper

depends on ALL 3 branches

Can we design efficient MPC protocols for computing conditional branches, where communication only depends on the size of a single branch?

Naïve use of existing MPC protocols will result in communication proportional to all 3 branches

MPC with Free Branching: Applications

Control flow instructions in computer programs

Collection of servers providing services that clients can pay and for and obliviously avail

k = # branches

|C| = size of largest branch

Result	No. of Parties	Communication	Security	Rounds	Type of Circuits
[HK20]	2	<i>O</i> (<i>C</i>)	Semi-Honest	Non-interactive	Boolean
[HK21]	2	<i>O</i> (<i>C</i>)	Semi-Honest	Non-interactive	Boolean
[HKP20,HKP21]	n	$O(kn^2 C)$	Semi-Honest	Linear in depth	Boolean

k = # branches

|C| = size of largest branch

Result	No. of Parties	Communication	Security	Rounds	Type of Circuits
[HK20]	2	<i>O</i> (<i>C</i>)	Semi-Honest	Non-interactive	Boolean
[HK21]	2	0(C)	Semi-Honest	Non-interactive	Boolean
[HKP20,HKP21]	n	$O(kn^2 C)$	Semi-Honest	Linear in depth	Boolean

No *n*-party protocol where communication only depends on the size of one branch

k = # branches

|C| = size of largest branch

Result	No. of Parties	Communication	Security	Rounds	Type of Circuits
[HK20]	2	<i>O</i> (<i>C</i>)	Semi-Honest	Non-interactive	Boolean
[HK21]	2	0(C)	Semi-Honest	Non-interactive	Boolean
[HKP20,HKP21]	n	$O(kn^2 C)$	Semi-Honest	Linear in depth	Boolean

No maliciously secure protocol

k = # branches

|C| = size of largest branch

Result	No. of Parties	Communication	Security	Rounds	Type of Circuits
[HK20]	2	<i>O</i> (<i>C</i>)	Semi-Honest	Non-interactive	Boolean
[HK21]	2	0(C)	Semi-Honest	Non-interactive	Boolean
[HKP20,HKP21]	n	$O(kn^2 C)$	Semi-Honest	Linear in depth	Boolean

No protocol for arithmetic circuits

k = # branches

|C| = size of largest branch

Result	No. of Parties	Communication	Security	Rounds	Type of Circuits
[HK20]	2	<i>O</i> (<i>C</i>)	Semi-Honest	Non-interactive	Boolean
[HK21]	2	0(C)	Semi-Honest	Non-interactive	Boolean
[HKP20,HKP21]	n	$O(kn^2 C)$	Semi-Honest	Linear in depth	Boolean
Our Work	n	$O(n^2 \mathcal{C})$	Semi-Honest	Linear in depth	Arithmetic

k = # branches

|C| = size of largest branch

Result	No. of Parties	Communication	Security	Rounds	Type of Circuits
[HK20]	2	0(C)	Semi-Honest	Non-interactive	Boolean
[HK21]	2	0(C)	Semi-Honest	Non-interactive	Boolean
[HKP20,HKP21]	n	$O(kn^2 C)$	Semi-Honest	Linear in depth	Boolean
Our Work	n	$O(n^2 \mathcal{C})$	Semi-Honest	Linear in depth	Arithmetic
Our Work	n	$O(n^2s \mathcal{C})$	Malicious	Linear in depth	Arithmetic

Statistical security parameter

k = # branches

|C| = size of largest branch

Result	No. of Parties	Communication	Security	Rounds	Type of Circuits
[HK20]	2	<i>O</i> (<i>C</i>)	Semi-Honest	Non-interactive	Boolean
[HK21]	2	<i>O</i> (<i>C</i>)	Semi-Honest	Non-interactive	Boolean
[HKP20,HKP21]	n	$O(kn^2 C)$	Semi-Honest	Linear in depth	Boolean
Our Work	n	$O(n^2 \mathcal{C})$	Semi-Honest	Linear in depth	Arithmetic
Our Work	n	$O(n^2s C)$	Malicious	Linear in depth	Arithmetic
Our Work	n	$O(n^2 C)$	Semi-Honest	Constant	Boolean

k = # branches

|C| = size of largest branch

	Result	No. of Parties	Communication	Security	Rounds	Type of Circuits
	[HK20]	2	0(C)	Semi-Honest	Non-interactive	Boolean
	[HK21]	2	0(C)	Semi-Honest	Non-interactive	Boolean
	[HKP20,HKP21]	n	$O(kn^2 C)$	Semi-Honest	Linear in depth	Boolean
	Our Work	n	$O(n^2 C)$	Semi-Honest	Linear in depth	Arithmetic
	Our Work	n	$O(n^2s C)$	Malicious	Linear in depth	Arithmetic
	Our Work	n	$\overline{O(n^2 C)}$	Semi-Honest	Constant	Boolean

Main Ideas

Multiplexer

Multiplexer

Our Work: High-Level Approach

Obliviously select the active branch and only evaluate that on correct inputs

Our Work: High-Level Approach

Obliviously select the active branch and only evaluate that on correct inputs

Since the active branch must remain hidden, how does one compute on a hidden function?

Our Initial Observation: Similarities with PFE

Private Function Evaluation only 1 person knows the function!

Our Initial Observation: Similarities with PFE

$f\in\{f_1,f_2,f_3\}$

Private Function Evaluation only 1 person knows the function!

MPC for Conditional Branches No one knows the function!

Our Initial Observation: Similarities with PFE

$f\in\{f_1,f_2,f_3\}$

Private Function Evaluation only 1 person knows the function!

MPC for Conditional Branches No one knows the function!

Parties collectively hold information about the active branch

Talk Outline

Overview of the [MS13] PFE protocol

Our semi-honest non-constant round protocol for conditional branches

Performance Evaluation

Remarks on additional results
Talk Outline

Overview of the [MS13] PFE protocol

Our semi-honest non-constant round protocol for conditional branches

Performance Evaluation

Remarks on additional results

PFE: How to Hide Circuit Topology? [MS13]

PFE: How to Hide Circuit Topology? [MS13]

Hide wire configurations

PFE: How to Hide Circuit Topology? [MS13]

Hide wire configurations

Hide gate functions

For every gate g:

- Let $type_g = 0$: if g is a multiplication gate
- Let $type_g = 1$: if g is an addition gate

For every gate g:

- Let $type_g = 0$: if g is a multiplication gate
- Let $type_g = 1$: if g is an addition gate

For every gate g:

- Let $type_g = 0$: if g is a multiplication gate
- Let $type_g = 1$: if g is an addition gate

Given shares $[L_g]$, $[R_g]$ of left and right input wires, compute

For every gate g:

- Let $type_g = 0$: if g is a multiplication gate
- Let $type_g = 1$: if g is an addition gate

Compute using an MPC that can operate over shares!

Given shares $[L_g]$, $[R_g]$ of left and right input wires, compute $[type_g]$. $([L_g], [R_g]) + (1 - [type_g])$. $([L_g] + [R_g])$

 x_4

 x_4

 x_3

 x_4

 x_3

 x_1

 x_2

 x_4

2

Talk Outline

Overview of the [MS13] PFE protocol

Our semi-honest non-constant round protocol for conditional branches

Performance Evaluation

Remarks on additional results

Conditional Branches: Hiding Gate Functions

Conditional Branches: Hiding Gate Functions

Conditional Branches: Hiding Gate Functions

Let's assume parties have secret sharing of unary representation of α , i.e., $[b_1], \dots, [b_k]$

For every gate *g*:

$$[type_g] = [b_1].type_{1,g} + \dots + [b_k].type_{k,g}$$

Given shares $[L_g]$, $[R_g]$ of left and right input wires, compute $[type_g]$. $([L_g], [R_g]) + (1 - [type_g])$. $([L_g] + [R_g])$

 $[omask_{\pi_{\alpha}(w)}] = [b_1][omask_{\pi_1(w)}] + \dots + [b_1][omask_{\pi_1(w)}]$

 $[omask_{\pi_{\alpha}(w)}] = [b_1][omask_{\pi_1(w)}] + \dots + [b_1][omask_{\pi_1(w)}]$

 $[omask_{\pi_{\alpha}(w)}] = [b_1][omask_{\pi_1(w)}] + \dots + [b_1][omask_{\pi_1(w)}]$

Using Threshold Linearly Homomorphic Encryption!

 $[omask_{\pi_{\alpha}(w)}] = [b_1][omask_{\pi_1(w)}] + \dots + [b_1][omask_{\pi_1(w)}]$

Using Threshold Linearly Homomorphic Encryption!

Encrypt b_1, \dots, b_k :

$$< b_1 > \stackrel{Enc}{\leftarrow} [b_1], \dots, < b_k > \stackrel{Enc}{\leftarrow} [b_k]$$

 $[omask_{\pi_{\alpha}(w)}] = [b_1][omask_{\pi_1(w)}] + \dots + [b_1][omask_{\pi_1(w)}]$

Using Threshold Linearly Homomorphic Encryption!

Encrypt
$$b_1, \dots, b_k$$
:

$$\begin{array}{c} \langle b_1 \rangle \stackrel{Enc}{\leftarrow} [b_1], \dots, \langle b_k \rangle \stackrel{Enc}{\leftarrow} [b_k] \end{array} \end{array}$$
Each party p computes for every wire w :

$$\begin{array}{c} \langle omask_{\pi_{\alpha}(w)}^{(p)} \rangle = \langle b_1 \rangle . \ [omask_{\pi_1(w)}]^{(p)} + \dots + \langle b_k \rangle . \ [omask_{\pi_k(w)}]^{(p)} \end{array}$$

 $[omask_{\pi_{\alpha}(w)}] = [b_1][omask_{\pi_1(w)}] + \dots + [b_1][omask_{\pi_1(w)}]$

Using Threshold Linearly Homomorphic Encryption!

Encrypt
$$b_1, \dots, b_k$$
: $< b_1 > \stackrel{Enc}{\leftarrow} [b_1], \dots, < b_k > \stackrel{Enc}{\leftarrow} [b_k]$ Each party p computes
for every wire w : $< omask_{\pi_{\alpha}(w)}^{(p)} > = < b_1 > [omask_{\pi_1(w)}]^{(p)} + \dots + < b_k > [omask_{\pi_k(w)}]^{(p)}$ Aggregate: $< omask_{\pi_{\alpha}(w)} > = \sum_p < omask_{\pi_{\alpha}(w)}^{(p)} >$

 $[omask_{\pi_{\alpha}(w)}] = [b_1][omask_{\pi_1(w)}] + \dots + [b_1][omask_{\pi_1(w)}]$

Using Threshold Linearly Homomorphic Encryption!

Communication only depends on the size of one branch

Online Phase x_1 x_4 x_2 χ_3 For every gate *g*: After computing *g* Compute $[u_c] = [z_c] + [omask_c]$ Z_{C} and Reconstruct u_c С Gate *g* Incoming label а b $\pi(a)$ $\pi(b)$ Outgoing label Z_a Actual wire values Z_b

Talk Outline

Overview of the [MS13] PFE protocol

Our semi-honest non-constant round protocol for conditional branches

Performance Evaluation

Remarks on additional results

We use an implementation of semi-honest MASCOT from the MP-SPDZ library

We use an implementation of semi-honest MASCOT from the MP-SPDZ library

3 parties, 2¹⁶ gates in each branch

We use an implementation of semi-honest MASCOT from the MP-SPDZ library

3 parties, 2¹⁶ gates in each branch

We implement the [CDN01] Protocol

We implement the [CDN01] Protocol

3 parties, 2¹⁶ gates in each branch

We implement the [CDN01] Protocol Comm: CDN Branching Time: CDN Branching 4,000 Comm: CDN Parallel Time: CDN Paralle 350 3,500 3,000 (su 2,500 all 2,000 1,500 1,000 50 500 0 0 26 2^1 2² 2³ 24 25 21 2² 2³ 24 25 26 Branches Branches Communication **Run-Time**

3 parties, 2¹⁶ gates in each branch

Talk Outline

Overview of the [MS13] PFE protocol

Our semi-honest non-constant round protocol for conditional branches

Performance Evaluation

Remarks on additional results

This protocol can be extended to malicious security

This protocol can be extended to malicious security

Incurs additional multiplicative overhead dependent on the statistical security parameter

This protocol can be extended to malicious security

Incurs additional multiplicative overhead dependent on the statistical security parameter

A constant round variant based on multi-party garbling

This protocol can be extended to malicious security

Incurs additional multiplicative overhead dependent on the statistical security parameter

A constant round variant based on multi-party garbling

Naïve multi-party garbling using the above approach results in nonblack box use of cryptography

This protocol can be extended to malicious security

Incurs additional multiplicative overhead dependent on the statistical security parameter

A constant round variant based on multi-party garbling

Naïve multi-party garbling using the above approach results in nonblack box use of cryptography

We present an alternate solution using the linearly key-homomorphic PRFs based garbling approach from [BLO17]

Conclusion

A multi-party protocol for securely computing conditional branches, where the total communication only depends on the size of the largest branch

Extensions to malicious security and a semi-honest constant round protocol

Thank You!