
Order-C Secure Multiparty Computation
for Highly Repetitive Circuits

Gabrielle Beck Aarushi Goel Abhishek Jain Gabriel Kaptchuk

EUROCRYPT 2021

Secure Multiparty Computation

𝑥!

𝑥"

𝑥#𝑥$

𝑥%

Adversary learns nothing beyond the output of the function, i.e.,
𝑦 = 𝑓(𝑥!, 𝑥", 𝑥#, 𝑥$, 𝑥%)

• MPC protocols are becoming increasingly efficient.
• Can be used to compute complex functionalities such as:

MPC and Emerging Applications

Training machine learning
algorithms on massive,

distributed datasets.

Simulating large RAM
programs on distributed

datasets

These are large computations on massive distributed datasets

Existing Efficient and Implemented Protocols

𝑂 𝑛 𝐶 : Total computation/communication complexity

• Per-party work: 𝑂(|𝐶|)

No. of parties Size of circuit

• For large computations, parties need to have large computing resources.

[HN06, DN07, LN17, CGHIKLN18, NV18, FL19, GSZ20]

• Limits the kind of parties who can participate.

Better than 𝑂 𝑛 𝐶 ?

Main Question:
Can we design an 𝑂(|𝐶|)MPC protocol for a larger class of circuits?

$𝑂(|𝐶|): Total computation and communication [DIKNS08, DIK10, GIP15]

• +𝑂 hides polynomial factors in log |𝐶| and security parameter 𝜅
• Not concretely efficient

𝑂(|𝐶|): Total computation and communication [DIK10, GIP15]

• Only for SIMD circuits
• No known implementations

Advantages of 𝑂(|𝐶|) MPC protocols

• Can be run with many many parties
• Easier to justify honest majority
• Supports division of work
• Can be used with large volunteer

networks such are Bitcoin and Tor

Parties with low computing resources can also
participate

Could enable massive, crowd sourced
applications such MPC-as-a-service

Our Contributions

• Semi-honest and maliciously secure protocols

• 𝑡 < 𝑛 !
"
− "

&
static corruptions

• Information theoretic
• No setup assumptions
• Security with Abort
• Provide Implementation - first implementation of MPC that uses packed secret sharing

𝑂(|𝐶|)MPC protocol for Highly Repetitive Circuits

Single Instruction Multiple Data Circuits

Circuits that comprise of multiple parallel copies of the same sub circuit

Highly Repetitive Circuits

𝐴, 𝐵 - repetitive circuit is highly repetitive w.r.t. 𝑛 parties, if 𝐴 ∈ Ω(𝑛) and 𝐵 ∈ Ω 𝑛 .

Composed of an arbitrary number of blocks of width at least 𝐴, that recur at least 𝐵 times.𝐴, 𝐵 -Repetitive Circuits:

Highly Repetitive Circuits:

Example of (3,3)-repetitive circuit

Examples of Highly Repetitive Circuits

Machine LearningFor/While Loops Block Ciphers Cryptographic Hash Functions

Talk Outline
Background

Our Techniques

Existing Efficient 𝑂 𝑛 𝐶 Protocols

Packed Secret Sharing

Existing +𝑂(|𝐶|) and 𝑂(|𝐶|) Protocols

Existing Efficient 𝑂 𝑛 𝐶 Protocols

X +

X

Gate-by-Gate Evaluation of the
circuit on secret shared inputs

Input sharing: 𝑡-out-of-𝑛 shares of inputs

[𝑎]& [𝑏]& [𝑐]& [𝑑]&

Multiplication (using [𝑟]&, [𝑟]%&)

Compute [𝑒]%&= [𝑎]&×[𝑏]&
[𝑒 + 𝑟]%&← [𝑒]%&+[𝑟]%&

Reconstruct 𝑣 = 𝑒 + 𝑟

Compute [𝑒]&← [𝑣]&− [𝑟]&

Addition

Compute [𝑓]&= [𝑐]&+ [𝑑]&

Non-interactive
𝑂(𝑛) communication given [𝑟]&, [𝑟]%&

[HN06, DN07, LN17, CGHIKLN18, NV18, FL19, GSZ20]

Double sharing of random value

Generating ([𝑟]!, [𝑟]"!) [HN06, DN07, BTH08]

Hyper-invertible
or

Vandermonde
matrix

𝑛× 𝑛 − 𝑡 matrix

×

𝑠$𝑠%𝑠! 𝑠#𝑠"

=
[𝑠!]& [𝑠%]& [𝑠$]& [𝑠"]& [𝑠#]& [𝑟!]& [𝑟%]& [𝑟$]&

[𝑠!]%& [𝑠%]%& [𝑠$]%& [𝑠"]%& [𝑠#]%&

𝑛 − 𝑡 pairs𝑂(𝑛%) Communication

Amortized 𝑂(𝑛) communication to generate [𝑟]4, [𝑟]54

[𝑟!]%& [𝑟%]%& 𝑟$ %&

Each party samples a random value and shares it using a
degree 𝑡-out-of-𝑛 and 2𝑡-out-of-𝑛 secret sharing

Existing Efficient 𝑂 𝑛 𝐶 Protocols

X +

X

Gate-by-Gate Evaluation of the
circuit on secret shared inputs

Input sharing: 𝑡-out-of-𝑛 shares of inputs

[𝑎]& [𝑏]& [𝑐]& [𝑑]&

Multiplication (using [𝑟]&, [𝑟]%&)

Compute [𝑒]%&= [𝑎]&×[𝑏]&
[𝑒 + 𝑟]%&← [𝑒]%&+[𝑟]%&

Reconstruct 𝑣 = 𝑒 + 𝑟

Compute [𝑒]&← [𝑣]&− [𝑟]&

Addition

Compute [𝑓]&= [𝑐]&+ [𝑑]&

Non-interactive
𝑂(𝑛) communication given [𝑟]&, [𝑟]%&

[HN06, DN07, LN17, CGHIKLN18, NV18, FL19, GSZ20]

Double sharing of random value

Talk Outline
Background

Our Techniques

Existing Efficient 𝑂 𝑛 𝐶 Protocols

Packed Secret Sharing

Existing +𝑂(|𝐶|) and 𝑂(|𝐶|) Protocols

Packed Secret Sharing (PSS) [FY92]
𝑣

𝑠$𝑠%𝑠! 𝑠#𝑠"

𝑣!

𝑠$𝑠%𝑠! 𝑠#𝑠"

𝑣% 𝑣$ 𝑣"Secret value

shares

Secret vector

shares

Regular Secret Sharing Packed Secret Sharing

1 Value → 𝑛 shares 𝑂(𝑛) Values → 𝑛 shares

Corruption threshold: 𝑡 < D
E Corruption threshold 𝑡 < 𝑛(FE−

F
G)

Computing using PSS

𝑢! + 𝑣!

𝑣! 𝑣% 𝑣$ 𝑣"

𝑈 =

𝒱 =

𝑠$𝑠%𝑠! 𝑠#𝑠"

𝑟$𝑟%𝑟! 𝑟#𝑟"

𝑢% + 𝑣% 𝑢$ + 𝑣$ 𝑢" + 𝑣" 𝑢! × 𝑣! 𝑢% × 𝑣% 𝑢$ × 𝑣$ 𝑢" × 𝑣"

𝑢! 𝑢% 𝑢$ 𝑢"

Addition

𝑠! + 𝑟! 𝑠! + 𝑟! 𝑠! + 𝑟! 𝑠! + 𝑟! 𝑠! + 𝑟!

𝑡-out-of-𝑛 Packed sharing of:

Multiplication

𝑠!× 𝑟! 𝑠!× 𝑟! 𝑠! × 𝑟! 𝑠!× 𝑟! 𝑠! × 𝑟!

2𝑡-out-of-𝑛 Packed sharing of:

Packed Secret
Sharing

Talk Outline
Background

Our Techniques

Existing Efficient 𝑂 𝑛 𝐶 Protocols

Packed Secret Sharing

Existing +𝑂(|𝐶|) and 𝑂(|𝐶|) Protocols

Evaluating SIMD Circuits [DIK10,GIP15]

X +

X

X +

X

X +

X

X +

X

𝑎! 𝑏! 𝑐! 𝑑! 𝑎% 𝑏% 𝑐% 𝑑% 𝑎$ 𝑏$ 𝑐$ 𝑑$ 𝑎" 𝑏" 𝑐" 𝑑"

𝑂 𝑛 copies of a sub-circuit of size |𝐶|
with different inputs

Evaluating SIMD Circuits using PSS [DIK10,GIP15]

X +

X

[𝐴]& [𝐵]& [𝐶]& [𝐷]&

𝑂(𝑛|𝐶|) communication for evaluating 𝑂 𝑛 copies of a sub-circuit

Amortized 𝑂 |𝐶| communication to evaluate a single instance of the sub-circuit

𝑎! 𝑎% 𝑎$ 𝑎" 𝑏! 𝑏% 𝑏$ 𝑏"

𝑐! 𝑐% 𝑐$ 𝑐" 𝑑! 𝑑% 𝑑$ 𝑑"

𝐴 =

𝐵 =

𝐶 =

𝐷 =

Evaluate a single instance of the sub-circuit as before
but on packed shares of :

Going Beyond SIMD Circuits? [DIK10, GIP15]

Transform any given circuit into a circuit that can be used
with packed secret sharing by embedding routing networks

Significantly Increases the size of the circuit to $𝑂(|𝐶|)

Talk Outline
Background

Our Techniques

Existing Efficient 𝑂 𝑛 𝐶 Protocols

Packed Secret Sharing
Existing +𝑂(|𝐶|) and 𝑂(|𝐶|) Protocols+

Talk Outline
Background

Our Techniques

Main Challenges

Our Main Ideas

Leveraging repetition in Highly Repetitive Circuits

Malicious Security

Going Beyond SIMD without Circuit
Transformation?

𝑎! 𝑏! 𝑎% 𝑏% 𝑎$ 𝑏$ 𝑎" 𝑏" 𝑎# 𝑏# 𝑎' 𝑏' 𝑎(𝑏(𝑎) 𝑏)

× × × × ×+ + +

𝑎! 𝑎" 𝑎# 𝑎$ 𝑏! 𝑏" 𝑏# 𝑏$ 𝑎% 𝑎& 𝑎' 𝑎(𝑏% 𝑏& 𝑏' 𝑏(

Parties have packed Shares of these vectors

× × × × × ×++

Going Beyond SIMD without Circuit
Transformation?

𝑎! 𝑏! 𝑎% 𝑏% 𝑎$ 𝑏$ 𝑎" 𝑏" 𝑎# 𝑏# 𝑎' 𝑏' 𝑎(𝑏(𝑎) 𝑏)

𝑑! = 𝑎% +𝑏% 𝑑" = 𝑎&×𝑏& 𝑑# = 𝑎'×𝑏' 𝑑$ = 𝑎(×𝑏(𝑐! = 𝑎!×𝑏! 𝑐" = 𝑎" +𝑏" 𝑐# = 𝑎# +𝑏# 𝑐$ = 𝑎$×𝑏$

× × × × ×+ + +

𝑎! 𝑎" 𝑎# 𝑎$ 𝑏! 𝑏" 𝑏# 𝑏$ 𝑎% 𝑎& 𝑎' 𝑎(𝑏% 𝑏& 𝑏' 𝑏(

Parties have packed Shares of these vectors

Need to Compute

× × × × × ×++

Going Beyond SIMD without Circuit
Transformation?

𝑎! 𝑏! 𝑎% 𝑏% 𝑎$ 𝑏$ 𝑎" 𝑏" 𝑎# 𝑏# 𝑎' 𝑏' 𝑎(𝑏(𝑎) 𝑏)

𝑐! 𝑐" 𝑐" 𝑐" 𝑐# 𝑑! 𝑐$ 𝑐$

× × × × × ×

× × × × ×

++

+ + +

𝑎! 𝑎" 𝑎# 𝑎$ 𝑏! 𝑏" 𝑏# 𝑏$ 𝑎% 𝑎& 𝑎' 𝑎(𝑏% 𝑏& 𝑏' 𝑏(

Parties have packed Shares of these vectors

𝑑" 𝑐$ 𝑑! 𝑑# 𝑑$ 𝑑" 𝑑$ 𝑑$

Need these for computing the next layer

𝑑! = 𝑎% +𝑏% 𝑑" = 𝑎&×𝑏& 𝑑# = 𝑎'×𝑏' 𝑑$ = 𝑎(×𝑏(𝑐! = 𝑎!×𝑏! 𝑐" = 𝑎" +𝑏" 𝑐# = 𝑎# +𝑏# 𝑐$ = 𝑎$×𝑏$

Main Challenges

𝑣! 𝑣% 𝑣$ 𝑣"

𝑈 =

𝒱 =

𝑢! 𝑢% 𝑢$ 𝑢"

𝑢! + 𝑣! 𝑢% × 𝑣% 𝑢$ × 𝑣$ 𝑢" + 𝑣"

Need to compute packed sharing of:

𝑢! 𝑣" 𝑣$ 𝑢% 𝑣! 𝑢$ 𝑣% 𝑢"

Given packed shares of:

Different Operations:

Re-aligned Vector Values:

Talk Outline
Background

Our Techniques

Main Challenges

Our Main Ideas

Leveraging repetition in Highly Repetitive Circuits

Malicious Security

Differing Operation PSS

Re-aligning PSS vectors

Differing-operation PSS 𝑢! + 𝑣! 𝑢" × 𝑣" 𝑢# × 𝑣# 𝑢$ + 𝑣$

Computing packed sharing of:

𝑢! + 𝑣!+ mask 𝑢" + 𝑣" + mask 𝑢# + 𝑣# + mask 𝑢$ + 𝑣$ + mask

𝑢! × 𝑣!+ mask 𝑢" × 𝑣" + mask 𝑢#× 𝑣# + mask 𝑢$ × 𝑣$ + mask
Reconstruct both operations

𝑢! + 𝑣!+ mask 𝑢" × 𝑣" + mask 𝑢#× 𝑣# + mask 𝑢$ + 𝑣$ + mask

𝑢! + 𝑣! 𝑢" × 𝑣" 𝑢#× 𝑣# 𝑢$ + 𝑣$

Step 1:

Step 2: Select and share new vector

Step 3: Unmask new vector

What are these masks?

Differing-operation PSS 𝑢! + 𝑣! 𝑢" × 𝑣" 𝑢# × 𝑣# 𝑢$ + 𝑣$

Computing packed sharing of:

𝑢! + 𝑣!+ 𝑟!)** 𝑢" + 𝑣" + 𝑟")** 𝑢# + 𝑣# + 𝑟#)** 𝑢$ + 𝑣$ + 𝑟$)**

𝑢! × 𝑣!+ 𝑟!+,-. 𝑢"× 𝑣" + 𝑟"+,-. 𝑢#× 𝑣# + 𝑟#+,-. 𝑢$× 𝑣$ + 𝑟$+,-.
Reconstruct both operations

𝑢! + 𝑣!+ 𝑟!)** 𝑢"× 𝑣" + 𝑟"+,-. 𝑢#× 𝑣# + 𝑟#+,-. 𝑢$ + 𝑣$ + 𝑟$)**

𝑢! + 𝑣! 𝑢" × 𝑣" 𝑢#× 𝑣# 𝑢$ + 𝑣$

Step 1:

Step 2: Select and share new vector

Step 3: Unmask new vector

𝑅)** = 𝑟!)** 𝑟")** 𝑟#)** 𝑟$)** 𝑅+,-. = 𝑟!+,-. 𝑟"+,-. 𝑟#+,-. 𝑟$+,-. 𝑅 = 𝑟!)** 𝑟$)**𝑟")** 𝑟#)**

Parties have shares of these correlated “masking” vectors

Re-aligning PSS vectors

𝑢!+ mask 𝑢"+ mask 𝑢#+ mask 𝑢$+ mask

𝑣!+ mask 𝑣" + mask 𝑣# + mask 𝑣$ + mask
Reconstruct both masked vectors

𝑢! + mask 𝑣$ + mask 𝑣# + mask 𝑢" + mask

𝑢! 𝑣$ 𝑣# 𝑢"

Step 1:

Step 2: Select and share new vectors

Step 3: Unmask new vectors

Computing packed sharing of:
𝑢! 𝑣$ 𝑣# 𝑢" 𝑣! 𝑢# 𝑣" 𝑢$

𝑣!+ mask 𝑢# + mask 𝑣" + mask 𝑢$+ mask

𝑣! 𝑢# 𝑣" 𝑢$

Correlated masking vectors can be chosen in a similar way

Going Beyond SIMD without Circuit
Transformation?

𝑎! 𝑏! 𝑎% 𝑏% 𝑎$ 𝑏$ 𝑎" 𝑏" 𝑎# 𝑏# 𝑎' 𝑏' 𝑎(𝑏(𝑎) 𝑏)

𝑐! 𝑐" 𝑐" 𝑐" 𝑐# 𝑑! 𝑐$ 𝑐$

𝑑! = 𝑎% +𝑏% 𝑑" = 𝑎&×𝑏& 𝑑# = 𝑎'×𝑏' 𝑑$ = 𝑎(×𝑏(𝑐! = 𝑎!×𝑏! 𝑐" = 𝑎" +𝑏" 𝑐# = 𝑎# +𝑏# 𝑐$ = 𝑎$×𝑏$

× × × × × ×

× × × × ×

++

+ + +

𝑎! 𝑎" 𝑎# 𝑎$ 𝑏! 𝑏" 𝑏# 𝑏$ 𝑎% 𝑎& 𝑎' 𝑎(𝑏% 𝑏& 𝑏' 𝑏(

𝑑" 𝑐$ 𝑑! 𝑑# 𝑑$ 𝑑" 𝑑$ 𝑑$

Differing Operations + Re-alignment

𝑐! 𝑐" 𝑐" 𝑐" 𝑐# 𝑑! 𝑐$ 𝑐$ 𝑑" 𝑐$ 𝑑! 𝑑# 𝑑$ 𝑑" 𝑑$ 𝑑$

Differing operations PSS and re-alignment process
can be combined to compute this in a single step

𝑎! 𝑎" 𝑎# 𝑎$ 𝑏! 𝑏" 𝑏# 𝑏$ 𝑎% 𝑎& 𝑎' 𝑎(𝑏% 𝑏& 𝑏' 𝑏(𝐴!= 𝐵!= 𝐴%= 𝐵%=

𝐶! = 𝐶% =𝐷! = 𝐷% =

Differing Operations + Re-alignment

𝑎! 𝑎" 𝑎# 𝑎$ 𝑏! 𝑏" 𝑏# 𝑏$ 𝑎% 𝑎& 𝑎' 𝑎(𝑏% 𝑏& 𝑏' 𝑏(

Correlated Masking Vectors needed for this computation:

𝑅!)** = 𝑟!,!)** 𝑟!,")** 𝑟!,#)** 𝑟!,$)**

𝑅!+,-. = 𝑟!,!+,-. 𝑟!,"+,-. 𝑟!,#+,-. 𝑟!,$+,-.

𝑅")** = 𝑟",!)** 𝑟",")** 𝑟",#)** 𝑟",$)**

𝑅"+,-. = 𝑟",!+,-. 𝑟","+,-. 𝑟",#+,-. 𝑟",$+,-.

For masking
(𝐴!+𝐵!) and
(𝐴!×𝐵!)

𝐴!= 𝐵!= 𝐴%= 𝐵%=

For masking
(𝐴%+𝐵%) and
(𝐴%×𝐵%)

𝑎!×𝑏! 𝑎" +𝑏" 𝑎" +𝑏" 𝑎" +𝑏" 𝑎# +𝑏# 𝑎$ +𝑏$ 𝑎%×𝑏% 𝑎%×𝑏% 𝑎&×𝑏& 𝑎%×𝑏% 𝑎$ +𝑏$ 𝑎'×𝑏' 𝑎(×𝑏(𝑎&×𝑏& 𝑎(×𝑏(𝑎(×𝑏(

𝐶! = 𝐶% =𝐷! = 𝐷% =

Differing Operations + Re-alignment

𝑎! 𝑎" 𝑎# 𝑎$ 𝑏! 𝑏" 𝑏# 𝑏$ 𝑎% 𝑎& 𝑎' 𝑎(𝑏% 𝑏& 𝑏' 𝑏(

Correlated Masking Vectors needed for this computation:

𝑅!)** = 𝑟!,!)** 𝑟!,")** 𝑟!,#)** 𝑟!,$)**

𝑅!+,-. = 𝑟!,!+,-. 𝑟!,"+,-. 𝑟!,#+,-. 𝑟!,$+,-.

𝑅!
-01. = 𝑟!,!+,-. 𝑟!,$)**𝑟!,")** 𝑟!,#)**

𝑅!
2345. = 𝑟!,#)** 𝑟!,$+,-.𝑟",!)** 𝑟!,$+,-.

𝑅"
-01. = 𝑟","+,-. 𝑟",#+,-.𝑟!,$+,-. 𝑟",!)**

𝑅"
2345. = 𝑟",$+,-. 𝑟",$+,-.𝑟","+,-. 𝑟",$+,-.

For unmasking
𝐶! and 𝐷!

𝐴!= 𝐵!= 𝐴%= 𝐵%=

𝑅")** = 𝑟",!)** 𝑟",")** 𝑟",#)** 𝑟",$)**

𝑅"+,-. = 𝑟",!+,-. 𝑟","+,-. 𝑟",#+,-. 𝑟",$+,-.

For unmasking
𝐶% and 𝐷%

𝑎!×𝑏! 𝑎" +𝑏" 𝑎" +𝑏" 𝑎" +𝑏" 𝑎# +𝑏# 𝑎$ +𝑏$ 𝑎%×𝑏% 𝑎%×𝑏% 𝑎&×𝑏& 𝑎%×𝑏% 𝑎$ +𝑏$ 𝑎'×𝑏' 𝑎(×𝑏(𝑎&×𝑏& 𝑎(×𝑏(𝑎(×𝑏(

𝐶! = 𝐶% =𝐷! = 𝐷% =

Generating Correlated Masking Vectors

𝑅!)** = 𝑟!,!)** 𝑟!,")** 𝑟!,#)** 𝑟!,$)**

𝑅!+,-. = 𝑟!,!+,-. 𝑟!,"+,-. 𝑟!,#+,-. 𝑟!,$+,-.

𝑅!
-01. = 𝑟!,!+,-. 𝑟!,$)**𝑟!,")** 𝑟!,#)** 𝑅"

-01. = 𝑟","+,-. 𝑟",#+,-.𝑟!,$+,-. 𝑟",!)**

𝑅"
2345. = 𝑟",$+,-. 𝑟",$+,-.𝑟","+,-. 𝑟",$+,-.

𝑅")** = 𝑟",!)** 𝑟",")** 𝑟",#)** 𝑟",$)**

𝑅"+,-. = 𝑟",!+,-. 𝑟","+,-. 𝑟",#+,-. 𝑟",$+,-.

𝑅!
2345. = 𝑟!,#)** 𝑟!,$+,-.𝑟",!)** 𝑟!,$+,-.

Correlation between masking vectors depends on the topology of
individual layers in the circuit

Generating Correlated Marking Vectors

𝑛× 𝑛 − 𝑡 matrix 𝑛 − 𝑡 sets

Parties sample random vectors and
compute shares of correlated vectors

based on the topology of a layer.

𝑂(𝑛%) Communication

Amortized 𝑂(𝑛) communication to generate 1 set of correlated random vectors of length 𝑂(𝑛)

Multiply shares of these sets of
correlated vectors with a Hyper-

invertible or Vandermonde matrix

Get 𝑛 − 𝑡 sets of correlated
random vectors that all have

the same correlation

𝑂(𝑛") communication to generate 𝑛 − 𝑡 sets of correlated random vectors of length 𝑂(𝑛)

Each such set is used to evaluate 𝑂(𝑛) gates ⟹𝑂(1) communication per gate

Talk Outline
Background

Our Techniques

Main Challenges

Our Main Ideas

Leveraging repetition in Highly Repetitive Circuits

Malicious Security

Differing Operation PSS

Re-aligning PSS vectors

Generating Correlated Masking Vectors for
Highly Repetitive Circuits

Will use same correlation between masking vectors

To get 𝑂(|𝐶|) total communication, each such block must be
repeated at least 𝑂(𝑛) times and have least 𝑂(𝑛) gates

Summary So Far

Generate packed shares of correlated masking
vectors for each unique block configuration using

batched generation

Use these correlated masking vectors to evaluate
blocks of gates using differing operation PSS + re-

alignment over packed secret shared vectors

Talk Outline
Background

Our Techniques

Main Challenges

Our Main Ideas

Leveraging repetition in Highly Repetitive Circuits

Malicious Security

Differing Operation PSS

Re-aligning PSS vectors

Malicious Security

[GIP15]: Most packed secret sharing based semi-honest protocols are secure against
malicious adversaries up to linear attacks.

Existing compilers [GIP15, CGHIKLN18] add malicious security by running multiple
instances of the semi-honest protocol and comparing the outputs.

Similar to [CGHIKLN18], our protocol can be made maliciously secure by running two
copies of the semi-honest version and comparing the outputs.

Conclusion

• Semi-honest and maliciously secure protocols

• 𝑡 < 𝑛 !
"
− "

&
static corruptions

• Information theoretic

• No setup assumptions
• Security with Abort

• Provide Implementation - first implementation of MPC that uses packed secret sharing

• Also introduce a new non-interactive share conversion: Regular shares ⟶ Packed shares

𝑂(|𝐶|)MPC protocols for Highly Repetitive Circuits

Thank You!

