
Fluid MPC: Secure Multiparty
Computation with Dynamic Participants

Abhishek Jain Gabriel Kaptchuk

Arka Rai Choudhuri Aarushi Goel Matthew Green

Secure Multiparty Computation

𝑥!

𝑥"

𝑥#𝑥$

𝑥%

Secure Multiparty Computation

𝑥!

𝑥"

𝑥#𝑥$

𝑥% 𝑥!
𝑥% 𝑥$ 𝑥"

𝑥#

𝑦
𝑦 𝑦 𝑦

𝑦
𝑦 = 𝑓(𝑥!, 𝑥%, 𝑥$, 𝑥", 𝑥#)

Secure Multiparty Computation

𝑥!

𝑥"

𝑥#𝑥$

𝑥% 𝑥!
𝑥% 𝑥$ 𝑥"

𝑥#

𝑦
𝑦 𝑦 𝑦

𝑦
𝑦 = 𝑓(𝑥!, 𝑥%, 𝑥$, 𝑥", 𝑥#)

Adversary learns the same amount of information in the two scenarios

Efficient MPC and Emerging Applications

• MPC protocols are becoming increasingly efficient.
• Can be used to compute complex functionalities such as:
• Training machine learning algorithms on massive, distributed datasets.
• Simulating large RAM programs on distributed datasets
• Optimization programs over a complex, high dimensional space, where the

constraints of the dimensions are held by different players.

• The circuit representations of these computations could be extremely
deep.

Efficient MPC and Emerging Applications

• MPC protocols are becoming increasingly efficient.
• Can be used to compute complex functionalities such as:
• Training machine learning algorithms on massive, distributed datasets.
• Simulating large RAM programs on distributed datasets
• Optimization programs over a complex, high dimensional space, where the

constraints of the dimensions are held by different players.

• The circuit representations of these computations could be extremely
deep.

Efficient MPC and Emerging Applications

• MPC protocols are becoming increasingly efficient.
• Can be used to compute complex functionalities such as:
• Training machine learning algorithms on massive, distributed datasets.
• Simulating large RAM programs on distributed datasets
• Optimization programs over a complex, high dimensional space, where the

constraints of the dimensions are held by different players.

• The circuit representations of these computations could be extremely
deep.

Efficient MPC and Emerging Applications

• MPC protocols are becoming increasingly efficient.
• Can be used to compute complex functionalities such as:
• Training machine learning algorithms on massive, distributed datasets.
• Simulating large RAM programs on distributed datasets
• Optimization programs over a complex, high dimensional space, where the

constraints of the dimensions are held by different players.

• The circuit representations of these computations could be extremely
deep.

Efficient MPC and Emerging Applications

• MPC protocols are becoming increasingly efficient.
• Can be used to compute complex functionalities such as:
• Training machine learning algorithms on massive, distributed datasets.
• Simulating large RAM programs on distributed datasets
• Optimization programs over a complex, high dimensional space, where the

constraints of the dimensions are held by different players.

• The circuit representations of these computations could be extremely
deep.

Efficient MPC and Emerging Applications

• MPC protocols are becoming increasingly efficient.
• Can be used to compute complex functionalities such as:
• Training machine learning algorithms on massive, distributed datasets.
• Simulating large RAM programs on distributed datasets
• Optimization programs over a complex, high dimensional space, where the

constraints of the dimensions are held by different players.

• The circuit representations of these computations could be extremely
deep.

Efficient MPC and Emerging Applications

• MPC protocols are becoming increasingly efficient.
• Can be used to compute complex functionalities such as:
• Training machine learning algorithms on massive, distributed datasets.
• Simulating large RAM programs on distributed datasets
• Optimization programs over a complex, high dimensional space, where the

constraints of the dimensions are held by different players.

• The circuit representations of these computations could be extremely
deep.

Efficient MPC and Emerging Applications

• MPC protocols are becoming increasingly efficient.
• Can be used to compute complex functionalities such as:
• Training machine learning algorithms on massive, distributed datasets.
• Simulating large RAM programs on distributed datasets
• Optimization programs over a complex, high dimensional space, where the

constraints of the dimensions are held by different players.

• The circuit representations of these computations could be extremely
deep.

Issue: Evaluating these functionalities could take up to several
hours or even days.

Prior Work: Static MPC

Prior Work: Static MPC

Round 1

Prior Work: Static MPC

Round 1 Round 2

Prior Work: Static MPC

Round 3Round 1 Round 2

Prior Work: Static MPC

Round 3 … …Round 1 Round 2

Prior Work: Static MPC

Round 3 … …Round 1 Round 2

I need to
leave

Prior Work: Static MPC

Round 3 … …Round 1 Round 2

Dropped out due to
connectivity issue

Prior Work: Static MPC

Round 3 … …Round 1 Round 2

Requiring all participants to stay online throughout the computation is an
unrealistic expectation.

Prior Work: Static MPC

Round 3 … …Round 1 Round 2

Requiring all participants to stay online throughout the computation is an
unrealistic expectation.Can we design MPC protocols with Dynamic Participants?

MPC with Dynamic Participants

MPC with Dynamic Participants

A group of parties start the computation

MPC with Dynamic Participants

After some time two parties have to leave

MPC with Dynamic Participants

And a new party wants to join the
computation

MPC with Dynamic Participants

The previous group of parties securely
distributes information about the

computation so far, to the new group

MPC with Dynamic Participants

Given this information, the new group
continues with the rest of the computation

MPC with Dynamic Participants

Again, after some time, a party has to
leave

MPC with Dynamic Participants

And an old party wants to re-join the
computation

MPC with Dynamic Participants

This group will again securely distribute
information about the computation thus far,

with the new group of parties

MPC with Dynamic Participants

This group will continue with the rest of the
computation

MPC with Dynamic Participants

This reduces the burden of computation on individual parties

MPC with Dynamic Participants

This reduces the burden of computation on individual parties

Parties with low computational resources can also participate for
a small time

MPC with Dynamic Participants

This reduces the burden of computation on individual parties

While parties with more time and computational resources can
help with the computation for a longer time

MPC with Dynamic Participants

This will result in a weighted, privacy preserving distributed
computing system.

MPC as a Service

• Allows Participants to join and leave at will
• Reduces burden of computation on individual

participants

MPC with Dynamic Participants

MPC as a Service

Dynamic Peer-to-peer networks.

• Allows Participants to join and leave at will
• Reduces burden of computation on individual

participants

MPC with Dynamic Participants

MPC as a Service

• Powered by volunteer nodes- that can come
and go as they wish.

• Very Successful!

Dynamic Peer-to-peer networks.

• Allows Participants to join and leave at will
• Reduces burden of computation on individual

participants

MPC with Dynamic Participants

MPC as a Service

• Powered by volunteer nodes- that can come
and go as they wish.

• Very Successful!

Dynamic Peer-to-peer networks.

• Allows Participants to join and leave at will
• Reduces burden of computation on individual

participants

MPC with Dynamic Participants

Compatible with each other

MPC as a Service

Dynamic Peer-to-peer networks.MPC with Dynamic Participants

MPC as a Service

Dynamic Peer-to-peer networks.MPC with Dynamic Participants

Volunteer networks capable of private computation.

MPC as a Service

Dynamic Peer-to-peer networks.MPC with Dynamic Participants

Volunteer networks capable of private computation.

MPC-as-a-service framework - anyone can volunteer to participate
irrespective of their computational power or availability.

Clients can delegate computations to such services.

Player Replaceability

• Byzantine Agreement [Mic17, CM19] : After every round, the current set of
players can be replaced by new ones.

• Blockchains [GHMVZ17]: This idea is used in the design of Algorand.
• Helps mitigate targeted attacks on chosen participants after their identity is

revealed.

• It would be great if this idea can be extended to MPC.

Player Replaceability

• Byzantine Agreement [Mic17, CM19] : After every round, the current set of
players can be replaced by new ones.

• Blockchains [GHMVZ17]: This idea is used in the design of Algorand.
• Helps mitigate targeted attacks on chosen participants after their identity is

revealed.

• It would be great if this idea can be extended to MPC.

Related Work

• Proactive MPC [OY91]
• Static participants
• Mobile adversaries

• Secret Sharing with dynamic participants [GKMPS20, BGGHKLRR20]
• Computational setting
• Guaranteed output delivery

Related Work

• Proactive MPC [OY91]
• Static participants
• Mobile adversaries

• Secret Sharing with dynamic participants [GKMPS20, BGGHKLRR20]
• Computational setting
• Guaranteed output delivery

Our Contributions

Fluid MPC: A formal model for MPC with dynamic participantsFluid MPC: A formal model for MPC with dynamic participants

Our Contributions

Fluid MPC: A formal model for MPC with dynamic participantsFluid MPC: A formal model for MPC with dynamic participants

Fluidity is the minimum commitment a party needs to make for participating in the protocol.

Our Contributions

Fluid MPC: A formal model for MPC with dynamic participants

Semi-Honest BGW protocol can be adapted to the Fluid MPC settingSemi-Honest BGW protocol can be adapted to the Fluid MPC setting,
where each party is required to speak only in one round (max fluidity)

Fluid MPC: A formal model for MPC with dynamic participants

Fluidity is the minimum commitment a party needs to make for participating in the protocol.

Our Contributions

Fluid MPC: A formal model for MPC with dynamic participants

Semi-Honest BGW protocol can be adapted to the Fluid MPC setting

Fluid MPC: A formal model for MPC with dynamic participants

A compiler that transforms “certain” semi-honest Fluid MPC protocols into
maliciously secure protocols:

• security with abort
• 2 × communication complexity
• Preserves fluidity

Fluidity is the minimum commitment a party needs to make for participating in the protocol.

Semi-Honest BGW protocol can be adapted to the Fluid MPC setting,
where each party is required to speak only in one round (max fluidity)

Our Contributions

Implementation of our maliciously secure protocol based on BGW

Fluid MPC: A formal model for MPC with dynamic participants

Semi-Honest BGW protocol can be adapted to the Fluid MPC setting

A compiler that transforms “certain” semi-honest Fluid MPC protocols into
maliciously secure protocols:

• security with abort
• 2 × communication complexity
• Preserves fluidity

Fluid MPC: A formal model for MPC with dynamic participants

Fluidity is the minimum commitment a party needs to make for participating in the protocol.

Semi-Honest BGW protocol can be adapted to the Fluid MPC setting,
where each party is required to speak only in one round (max fluidity)

Fluid MPC Model

Modeling Dynamic Computation

• Client-server model
• Clients delegate computation to volunteer servers

Modeling Dynamic Computation

• Client-server model
• Clients delegate computation to volunteer servers

Input Stage

Clients pre-process
their inputs and

hand them to the
servers

Modeling Dynamic Computation

• Client-server model
• Clients delegate computation to volunteer servers

Input Stage Execution Stage

Clients pre-process
their inputs and

hand them to the
servers

Dynamic servers participate to compute the function

Modeling Dynamic Computation

• Client-server model
• Clients delegate computation to volunteer servers

Input Stage Execution Stage Output Stage

Clients pre-process
their inputs and

hand them to the
servers

Dynamic servers participate to compute the function Clients reconstruct
the output of the

function

Modeling Execution Stage

Execution Stage

Modeling Execution Stage

… …Epoch 𝑖 Epoch 𝑖+1 Epoch 𝑖+2

Modeling Execution Stage

… …Epoch 𝑖 Epoch 𝑖+1 Epoch 𝑖+2

Modeling Execution Stage

Compute Phase Hand-off Phase Compute Phase Hand-off PhaseCompute Phase Hand-off Phase

… …Epoch 𝑖 Epoch 𝑖+1 Epoch 𝑖+2

Modeling Execution Stage

Compute Phase Hand-off Phase Compute Phase Hand-off PhaseCompute Phase Hand-off Phase

Epoch 𝑖 Epoch 𝑖+1 Epoch 𝑖+2… …

Committee 𝑆&

Modeling Execution Stage

Compute Phase Hand-off Phase Compute Phase Hand-off PhaseCompute Phase Hand-off Phase

Epoch 𝑖 Epoch 𝑖+1 Epoch 𝑖+2… …

Committee 𝑆& Committee 𝑆&'!

Modeling Execution Stage

Compute Phase Hand-off Phase Compute Phase Hand-off PhaseCompute Phase Hand-off Phase

Epoch 𝑖 Epoch 𝑖+1 Epoch 𝑖+2… …

Committee 𝑆& Committee 𝑆&'!

Modeling Execution Stage

Compute Phase Hand-off Phase Compute Phase Hand-off PhaseCompute Phase Hand-off Phase

Epoch 𝑖 Epoch 𝑖+1 Epoch 𝑖+2

Committee 𝑆& Committee 𝑆&'! Committee 𝑆&'%

… …

Corruption Threshold

• Clients: Honest Majority or Dishonest majority
• Servers: Honest Majority or Dishonest majority

Corruption Threshold

• Clients: Honest Majority or Dishonest majority
• Servers: Honest Majority or Dishonest majority

• Honest majority of clients
• Honest majority of servers in each committee

Our Choice

Fluid MPC Protocol

Committee Selection/Corruption Protocol Execution given these Committees

Fluid MPC Protocol

Committee Selection/Corruption Protocol Execution given these Committees

Fluid MPC Protocol

Committee Selection/Corruption Protocol Execution given these Committees

Committee Formation

Committee Corruption

Effect of Committee
Corruption on Prior Epochs

Fluid MPC Protocol

Committee Selection/Corruption Protocol Execution given these Committees

Committee Formation

Committee Corruption

Effect of Committee
Corruption on Prior Epochs

Committees: When are they formed?

Static Committee Formation: Committee for each epoch is known at the start of the
protocol or the execution stage.

Committees: When are they formed?

Execution Stage

Static Committee Formation: Committee for each epoch is known at the start of the protocol.

Input Stage

Committees: When are they formed?
Epoch Committee

1

2

3

Execution Stage

Static Committee Formation: Committee for each epoch is known at the start of the protocol.

Input Stage

Committees: When are they formed?

Execution Stage

Too Restrictive!

Static Committee Formation: Committee for each epoch is known at the start of the protocol.

Epoch Committee

1

2

3

Input Stage

Committees: When are they formed?

On-the-fly Committee Formation: Committee for each epoch is known at the start of the
hand-off phase of the previous epoch.

Committees: When are they formed?

On-the-fly Committee Formation: Committee for each epoch is known at the start of the
hand-off phase of the previous epoch.

Compute Phase Compute PhaseInput Stage Compute Phase Hand-off Phase Hand-off Phase

𝑆! is formed
here

Committee 𝑆!

Committees: When are they formed?

On-the-fly Committee Formation: Committee for each epoch is known at the start of the
hand-off phase of the previous epoch.

Compute Phase Compute PhaseInput Stage Compute Phase Hand-off Phase Hand-off Phase

𝑆! is formed
here

Committee 𝑆!

𝑆" is formed
here

Committee 𝑆"

Committees: When are they formed?

On-the-fly Committee Formation: Committee for each epoch is known at the start of the
hand-off phase of the previous epoch.

Compute Phase Compute PhaseInput Stage Compute Phase Hand-off Phase Hand-off Phase

𝑆! is formed
here

Committee 𝑆!

𝑆" is formed
here

𝑆# is formed
here

Committee 𝑆" Committee 𝑆#

Committees: When are they formed?

On-the-fly Committee Formation: Committee for each epoch is known at the start of the
hand-off phase of the previous epoch.

Compute Phase Compute PhaseInput Stage Compute Phase Hand-off Phase Hand-off Phase

𝑆! is formed
here

Committee 𝑆!

𝑆" is formed
here

𝑆# is formed
here

Committee 𝑆" Committee 𝑆#

Our Choice

Committees: How are they formed?

On-the-fly Committee Formation:

Volunteer: Anyone who volunteers can join the computation (Corruption threshold is difficult to enforce)
Elected: Anyone can nominate themself and an election process decides which nominees will participate

(e.g., [BGGHKLRR20, GHMNY20] enforces it using proof-of-stake blockchains)

Compute Phase Compute PhaseInput Stage Compute Phase Hand-off Phase Hand-off Phase

𝑆! is formed
here

Committee 𝑆!

𝑆" is formed
here

𝑆# is formed
here

Committee 𝑆" Committee 𝑆#

Committees: How are they formed?

On-the-fly Committee Formation:

Volunteer: Anyone who volunteers can join the computation (Corruption threshold is difficult to enforce)
Elected: Anyone can nominate themself and an election process decides which nominees will participate

(e.g., [BGGHKLRR20, GHMNY20] uses proof-of-stake blockchains)

Compute Phase Compute PhaseInput Stage Compute Phase Hand-off Phase Hand-off Phase

𝑆! is formed
here

Committee 𝑆!

𝑆" is formed
here

𝑆# is formed
here

Committee 𝑆" Committee 𝑆#

Fluid MPC Protocol

Committee Selection/Corruption Protocol Execution given these Committees

Committee Formation

Committee Corruption

Effect of Committee
Corruption on Prior Epochs

Committee Corruption

Compute Phase Hand-off PhaseHand-off Phase

When can a server be corrupted?

Static Corruption

Corrupted at the
time of committee

formation

Committee Corruption

Compute Phase Hand-off PhaseHand-off Phase

When can a server be corrupted?

Adaptive Corruption

Committee Corruption

Compute Phase Hand-off PhaseHand-off Phase

When can a server be corrupted?

Adaptive Corruption

Corrupted at
any time

Committee Corruption

Compute Phase Hand-off PhaseHand-off Phase

When can a server be corrupted?

Adaptive Corruption

Corrupted at
any time

Committee Corruption

Compute Phase Hand-off PhaseHand-off Phase

When can a server be corrupted?

Adaptive Corruption

Corrupted at
any time

Committee Corruption

Compute Phase Hand-off PhaseHand-off Phase

When can a server be corrupted?

Adaptive Corruption

Corrupted at
any time

Our Choice

Fluid MPC Protocol

Committee Selection/Corruption Protocol Execution given these Committees

Committee Formation

Committee Corruption

Effect of Committee
Corruption on Prior Epochs

Effect of Committee Corruption on Prior Epochs
What effect does corrupting a server have on the prior epochs where it participated?

Effect of Committee Corruption on Prior Epochs
What effect does corrupting a server have on the prior epochs where it participated?

What effect does corrupting a server have on the prior epochs where it participated?

Adv learns this private state

Effect of Committee Corruption on Prior Epochs

What effect does corrupting a server have on the prior epochs where it participated?

Adv learns this private state

Can be prevented by only allowing disjoint committees

Effect of Committee Corruption on Prior Epochs

What effect does corrupting a server have on the prior epochs where it participated?

Adv learns this private state

If there is overlap across committees, a server can only be
corrupted if it does not violate the corruption threshold of

prior epochs.

Can be prevented by only allowing disjoint committees

Effect of Committee Corruption on Prior Epochs

What effect does corrupting a server have on the prior epochs where it participated?

Similar to being passively corrupted in prior epochs

Adv learns this private state

If there is overlap across committees, a server can only be
corrupted if it does not violate the corruption threshold of

prior epochs.

Can be prevented by only allowing disjoint committees

Effect of Committee Corruption on Prior Epochs

Fluid MPC Protocol

Committee Selection/Corruption Protocol Execution given these Committees

Committee Formation

Committee Corruption

Effect of Committee
Corruption on Prior Epochs

Fluid MPC Protocol

Committee Selection/Corruption Protocol Execution given these Committees

Committee Formation

Committee Corruption

Effect of Committee
Corruption on Prior Epochs

Requirements/Challenges

Semi-Honest

Malicious

Fluid MPC Protocol

Committee Selection/Corruption Protocol Execution given these Committees

Committee Formation

Committee Corruption

Effect of Committee
Corruption on Prior Epochs

Requirements/Challenges

Semi-Honest

Malicious

Requirements: Small State Complexity

Since states need to be transferred after every epoch, state complexity has a
direct effect on communication complexity

Hand-off Phase

Requirements: Small State Complexity

Since states need to be transferred after every epoch, state complexity has a
direct effect on communication complexity

State size of each party should be independent of the depth of the circuit

Hand-off Phase

Requirements: High Fluidity
Compute Phase Hand-off Phase Compute Phase Hand-off PhaseCompute Phase Hand-off Phase

Committee 𝑆& Committee 𝑆&'! Committee 𝑆&'%

Fluidity is the minimum commitment a server needs to make for participating in the protocol.

Measured by the number of rounds in an epoch

Maximal Fluidity
Compute Phase Hand-off Phase Compute Phase Hand-off PhaseCompute Phase Hand-off Phase

Committee 𝑆& Committee 𝑆&'! Committee 𝑆&'%

1 Round of
unidirectional

hand-off phase

Essentially, each party is only
required to communicate in one

round

1 round epoch

Our Choice

Silent compute
phase

Requirements: Secure State Transfer
Hand-off Phase

Requirements: Secure State Transfer
Hand-off Phase

Requirements: Secure State Transfer
Hand-off Phase

Adv learns the private state
of 2 out of 3 parties in the

first committee

Requirements: Secure State Transfer
Hand-off Phase

This naïve way handing-off states between committees in a one-to-one
manner could break privacy.

Need a secure state transferring mechanism

Requirements: Checklist

qMax Fluidity

qSmall State Size

qSecure State
Transfer

Fluid MPC Protocol

Committee Selection/Corruption Protocol Execution given these Committees

Committee Formation

Committee Corruption

Effect of Committee
Corruption on Prior Epochs

Requirements/Challenges

Semi-Honest

Malicious

Semi-honest BGW

X +

X

𝑒

𝑎 𝑏 𝑐 𝑑

𝑓

𝑔

Semi-honest BGW

X +

X

𝑒

𝑎 𝑏 𝑐 𝑑

𝑓

𝑔 Gate-by-Gate evaluation on secret
shared inputs

Semi-honest BGW

Input sharing: 𝑡-out-of-𝑛 shares of inputs

X +

X

[𝑎]([𝑏]([𝑐]([𝑑](

X +

X

𝑒

𝑎 𝑏 𝑐 𝑑

𝑓

𝑔

Semi-honest BGW

Input sharing: 𝑡-out-of-𝑛 shares of inputs

X +

X

[𝑎]([𝑏]([𝑐]([𝑑](

Compute
[𝑓](= [𝑐](+ [𝑑](

Gate-by-Gate Evaluation

X +

X

𝑒

𝑎 𝑏 𝑐 𝑑

𝑓

𝑔

Semi-honest BGW

Input sharing: 𝑡-out-of-𝑛 shares of inputs

X +

X

Compute [𝑒]%(= [𝑎](×[𝑏](
[[𝑒]%(](← [𝑒]%(

Exchange [[𝑒]%(](
(Shares of Shares)

Compute [𝑒](← [[𝑒]%(](

[𝑎]([𝑏]([𝑐]([𝑑](

Compute
[𝑓](= [𝑐](+ [𝑑](

Gate-by-Gate Evaluation

X +

X

𝑒

𝑎 𝑏 𝑐 𝑑

𝑓

𝑔

Semi-honest BGW

Input sharing: 𝑡-out-of-𝑛 shares of inputs

X +

X

Compute [𝑒]%(= [𝑎](×[𝑏](
[[𝑒]%(](← [𝑒]%(

Exchange [[𝑒]%(](
(Shares of Shares)

Compute [𝑒](← [[𝑒]%(](

[𝑎]([𝑏]([𝑐]([𝑑](

Compute
[𝑓](= [𝑐](+ [𝑑](

Gate-by-Gate Evaluation

X +

X

𝑒

𝑎 𝑏 𝑐 𝑑

𝑓

𝑔

Semi-honest BGW

Input sharing: 𝑡-out-of-𝑛 shares of inputs

X +

X

Compute [𝑒]%(= [𝑎](×[𝑏](
[[𝑒]%(](← [𝑒]%(

Exchange [[𝑒]%(](
(Shares of Shares)

Compute [𝑒](← [[𝑒]%(](

[𝑎]([𝑏]([𝑐]([𝑑](

Compute
[𝑓](= [𝑐](+ [𝑑](

Gate-by-Gate Evaluation

X +

X

𝑒

𝑎 𝑏 𝑐 𝑑

𝑓

𝑔

Semi-honest BGW

Input sharing: 𝑡-out-of-𝑛 shares of inputs

X +

X

Compute [𝑒]%(= [𝑎](×[𝑏](
[[𝑒]%(](← [𝑒]%(

Exchange [[𝑒]%(](
(Shares of Shares)

Compute [𝑒](← [[𝑒]%(](

[𝑎]([𝑏]([𝑐]([𝑑](

Compute
[𝑓](= [𝑐](+ [𝑑](

Gate-by-Gate Evaluation

X +

X

𝑒

𝑎 𝑏 𝑐 𝑑

𝑓

𝑔

Semi-honest BGW

Input sharing: 𝑡-out-of-𝑛 shares of inputs

X +

X

Compute [𝑒]%(= [𝑎](×[𝑏](
[[𝑒]%(](← [𝑒]%(

Exchange [[𝑒]%(](
(Shares of Shares)

Compute [𝑒](← [[𝑒]%(](

[𝑎]([𝑏]([𝑐]([𝑑](

𝑔 ← [𝑔](

Compute
[𝑓](= [𝑐](+ [𝑑](

Output Reconstruction

Gate-by-Gate Evaluation

X +

X

𝑒

𝑎 𝑏 𝑐 𝑑

𝑓

𝑔

Semi-honest Fluid-BGW

X +

X

Semi-honest Fluid-BGW

X +

X

[𝑎]([𝑏]([𝑐]([𝑑](

Input Phase: Clients send 𝑡-out-of-𝑛 shares of inputs to the first committee

Semi-honest Fluid-BGW

X +

X

[𝑎]([𝑏]([𝑐]([𝑑](

Input Phase: Clients send 𝑡-out-of-𝑛 shares of inputs to the first committee

Execution Stage

Layer 1

Layer 2

Layer-wise computations
Committee 𝑖 computes layer 𝑖

Semi-honest Fluid-BGW

X +

X

[𝑎]([𝑏]([𝑐]([𝑑](

Input Phase: Clients send 𝑡-out-of-𝑛 shares of inputs to the first committee

Computation Phase : [𝑒](← [[𝑒]%(](
of Epoch 2

Handoff Phase [[𝑒]%(](

Computation Phase : [𝑒]%(= [𝑎](×[𝑏](
of Epoch 1 [[𝑒]%(](← [𝑒]%(

Execution Stage

Computation Phase : [𝑓](← [[𝑓](](
of Epoch 2

Handoff Phase [[𝑓](](

Computation Phase : [𝑓](= [𝑐](+[𝑑](
of Epoch 1 [[𝑓](](← [𝑓](

Semi-honest Fluid-BGW

X +

X

[𝑎]([𝑏]([𝑐]([𝑑](

Input Phase: Clients send 𝑡-out-of-𝑛 shares of inputs to the first committee

Computation Phase : [𝑒](← [[𝑒]%(](
of Epoch 2

Handoff Phase [[𝑒]%(](

Computation Phase : [𝑒]%(= [𝑎](×[𝑏](
of Epoch 1 [[𝑒]%(](← [𝑒]%(

Execution Stage

Computation Phase : [𝑓](← [[𝑓](](
of Epoch 2

Handoff Phase [[𝑓](](

Computation Phase : [𝑓](= [𝑐](+[𝑑](
of Epoch 1 [[𝑓](](← [𝑓](

Semi-honest Fluid-BGW

X +

X

[𝑎]([𝑏]([𝑐]([𝑑](

Input Phase: Clients send 𝑡-out-of-𝑛 shares of inputs to the first committee

Computation Phase : [𝑒](← [[𝑒]%(](
of Epoch 2

Handoff Phase [[𝑒]%(](

Computation Phase : [𝑒]%(= [𝑎](×[𝑏](
of Epoch 1 [[𝑒]%(](← [𝑒]%(

Execution Stage

Computation Phase : [𝑓](← [[𝑓](](
of Epoch 2

Handoff Phase [[𝑓](](

Computation Phase : [𝑓](= [𝑐](+[𝑑](
of Epoch 1 [[𝑓](](← [𝑓](

Semi-honest Fluid-BGW

X +

X

[𝑎]([𝑏]([𝑐]([𝑑](

𝑔 ← [𝑔](
Output Phase

Input Phase: Clients send 𝑡-out-of-𝑛 shares of inputs to the first committee

Execution Stage

Computation Phase : [𝑓](← [[𝑓](](
of Epoch 2

Handoff Phase [[𝑓](](

Computation Phase : [𝑓](= [𝑐](+[𝑑](
of Epoch 1 [[𝑓](](← [𝑓](

Computation Phase : [𝑒](← [[𝑒]%(](
of Epoch 2

Handoff Phase [[𝑒]%(](

Computation Phase : [𝑒]%(= [𝑎](×[𝑏](
of Epoch 1 [[𝑒]%(](← [𝑒]%(

Semi-honest Fluid-BGW

X +

X

[𝑎]([𝑏]([𝑐]([𝑑](

𝑔 ← [𝑔](
Output Phase

Input Phase: Clients send 𝑡-out-of-𝑛 shares of inputs to the first committee

Execution Stage

Computation Phase : [𝑓](← [[𝑓](](
of Epoch 2

Handoff Phase [[𝑓](](

Computation Phase : [𝑓](= [𝑐](+[𝑑](
of Epoch 1 [[𝑓](](← [𝑓](

Computation Phase : [𝑒](← [[𝑒]%(](
of Epoch 2

Handoff Phase [[𝑒]%(](

Computation Phase : [𝑒]%(= [𝑎](×[𝑏](
of Epoch 1 [[𝑒]%(](← [𝑒]%(

qMax Fluidity

qSmall State Size

qSecure State
Transfer

Fluid MPC Protocol

Committee Selection/Corruption Protocol Execution given these Committees

Committee Formation

Committee Corruption

Effect of Committee
Corruption on Prior Epochs

Requirements/Challenges

Semi-Honest

Malicious

Shortcomings of Natural Solutions
Need to Verify Honest Behavior

Implementing a gate-by-gate check
Requires more interaction

q Max Fluidity

q Small State Size

q Secure State
Transfer

Shortcomings of Natural Solutions

q Max Fluidity

q Small State Size

q Secure State
Transfer

Need to Verify Honest Behavior

Implementing a gate-by-gate check
Requires more interaction

Using NIZKs
May require access to all prior rounds

q Max Fluidity

q Small State Size

q Secure State
Transfer

Additive Attack Paradigm [GIPST14]

X +

X

𝑒

𝑎 𝑏 𝑐 𝑑

𝑓

𝑔

Additive Attack Paradigm [GIPST14]

Most secret sharing based semi-honest protocols are
secure against malicious adversaries up to additive attacks:

X +

X

𝑒

𝑎 𝑏 𝑐 𝑑

𝑓

𝑔

Additive Attack Paradigm [GIPST14]

Most secret sharing based semi-honest protocols are
secure against malicious adversaries up to additive attacks:

X +

X

𝑎 + 𝜀$ 𝑏 + 𝜀% 𝑐 + 𝜀& 𝑑 + 𝜀'

𝑒 + 𝜀(𝑓 + 𝜀)

𝑔 + 𝜀*

X +

X

𝑒

𝑎 𝑏 𝑐 𝑑

𝑓

𝑔

𝜀 additive errors are independent of the actual wire values

Efficient Maliciously Secure Protocols [DPSZ12,CGHIKLN18]

Modern efficient maliciously secure protocols rely on this additive attack paradigm.

X +

X

𝑒

𝑎 𝑏 𝑐 𝑑

𝑓

𝑔

Semi-honest execution

X +

X

𝑀𝐴𝐶(𝑟, 𝑒)

𝑀𝐴𝐶(𝑟, 𝑎) 𝑀𝐴𝐶(𝑟, 𝑏)

𝑀𝐴𝐶(𝑟, 𝑓)

𝑀𝐴𝐶(𝑟, 𝑔)

𝑀𝐴𝐶(𝑟, 𝑑)𝑀𝐴𝐶(𝑟, 𝑐)

Semi-honest execution

Efficient Maliciously Secure Protocols [DPSZ12,CGHIKLN18]

Modern efficient maliciously secure protocols rely on this additive attack paradigm.

X +

X

𝑒

𝑎 𝑏 𝑐 𝑑

𝑓

𝑔

Semi-honest execution

X +

X

𝑀𝐴𝐶(𝑟, 𝑒)

𝑀𝐴𝐶(𝑟, 𝑎) 𝑀𝐴𝐶(𝑟, 𝑏)

𝑀𝐴𝐶(𝑟, 𝑓)

𝑀𝐴𝐶(𝑟, 𝑔)

𝑀𝐴𝐶(𝑟, 𝑑)𝑀𝐴𝐶(𝑟, 𝑐)

Semi-honest execution

Check validity of all the
MACs at the end

Efficient Maliciously Secure Protocols [DPSZ12,CGHIKLN18]

Modern efficient maliciously secure protocols rely on this additive attack paradigm.

X +

X

𝑒

𝑎 𝑏 𝑐 𝑑

𝑓

𝑔

Semi-honest execution

X +

X

𝑟𝑒

𝑟𝑎 𝑟𝑏

𝑟𝑓

𝑟𝑔

𝑟𝑑𝑟𝑐

Semi-honest execution

Check validity of all the
MACs at the end

X +

X

𝑒 = 𝑎𝑏 + 𝜀)

𝑎 +𝜀* 𝑏 + 𝜀+ 𝑐+ 𝜀, 𝑑+ 𝜀-

𝑓 = 𝑐 + 𝑑+ 𝜀.

𝑔 = 𝑒𝑓+ 𝜀/

Efficient Maliciously Secure Protocols [DPSZ12,CGHIKLN18]

X +

X

𝑟𝑒 = (𝑟𝑎)𝑏+ 𝜀)′

𝑟𝑎+ 𝜀*′ 𝑟𝑏+ 𝜀+′ 𝑟𝑐+ 𝜀,′ 𝑟𝑑 + 𝜀-′

𝑟𝑔 = 𝑟𝑒 𝑓 + 𝜀/′

X +

X

𝑒 = 𝑎𝑏 + 𝜀)

𝑎 +𝜀* 𝑏 + 𝜀+ 𝑐+ 𝜀, 𝑑+ 𝜀-

𝑓 = 𝑐 + 𝑑+ 𝜀.

𝑔 = 𝑒𝑓+ 𝜀/

X +

X

𝑟𝑒 = (𝑟𝑎)𝑏+ 𝜀)′

𝑟𝑎+ 𝜀*′ 𝑟𝑏+ 𝜀+′ 𝑟𝑐+ 𝜀,′ 𝑟𝑑 + 𝜀-′

𝑟𝑓 = 𝑟𝑐 + 𝑟𝑑+ 𝜀.′

𝑟𝑔 = 𝑟𝑒 𝑓 + 𝜀/′

Efficient Maliciously Secure Protocols [DPSZ12,CGHIKLN18]

For each gate, check if:

𝑒 𝑟𝑒=?=𝑟

X +

X

𝑒 = 𝑎𝑏 + 𝜀)

𝑎 +𝜀* 𝑏 + 𝜀+ 𝑐+ 𝜀, 𝑑+ 𝜀-

𝑓 = 𝑐 + 𝑑+ 𝜀.

𝑔 = 𝑒𝑓+ 𝜀/

X +

X

𝑟𝑒 = (𝑟𝑎)𝑏+ 𝜀)′

𝑟𝑎+ 𝜀*′ 𝑟𝑏+ 𝜀+′ 𝑟𝑐+ 𝜀,′ 𝑟𝑑 + 𝜀-′

𝑟𝑓 = 𝑟𝑐 + 𝑟𝑑+ 𝜀.′

𝑟𝑔 = 𝑟𝑒 𝑓 + 𝜀/′

Efficient Maliciously Secure Protocols [DPSZ12,CGHIKLN18]

For each gate, check if:

𝑒 𝑟𝑒=?=𝑟

𝑎𝑏 + 𝜀A 𝑟𝑎 𝑏 + 𝜀′A=?=𝑟

X +

X

𝑒 = 𝑎𝑏 + 𝜀)

𝑎 +𝜀* 𝑏 + 𝜀+ 𝑐+ 𝜀, 𝑑+ 𝜀-

𝑓 = 𝑐 + 𝑑+ 𝜀.

𝑔 = 𝑒𝑓+ 𝜀/

X +

X

𝑟𝑒 = (𝑟𝑎)𝑏+ 𝜀)′

𝑟𝑎+ 𝜀*′ 𝑟𝑏+ 𝜀+′ 𝑟𝑐+ 𝜀,′ 𝑟𝑑 + 𝜀-′

𝑟𝑓 = 𝑟𝑐 + 𝑟𝑑+ 𝜀.′

𝑟𝑔 = 𝑟𝑒 𝑓 + 𝜀/′

Efficient Maliciously Secure Protocols [DPSZ12,CGHIKLN18]

Consolidated check:

𝑟 '
!∈|$|

𝛼!(𝑧!) =?= '
!∈|$|

𝛼!(𝑟𝑧!)

Sample a random 𝛼! for each gate

Semi-honest Fluid BGW

Maliciously secure Fluid MPC

Maliciously secure Fluid MPC

Additive Attack Paradigm?

Semi-honest Fluid BGW

Maliciously secure Fluid MPC

Maliciously secure Fluid MPC

Additive Attack Paradigm?

We want this transformation to preserve the communication complexity and
fluidity of fluid BGW

Semi-honest Fluid BGW

Maliciously secure Fluid MPC

Maliciously secure Fluid MPC

Additive Attack Paradigm?

We want this transformation to preserve the communication complexity and
fluidity of fluid BGW

Observation: Additive Attack Paradigm extends to the Fluid MPC
setting in a natural way

Maliciously secure Fluid MPC
Can we use known techniques in the additive attack paradigm?

Maliciously secure Fluid MPC

If the linear combination is computed at the end
the values of 𝑟𝑧 and 𝑧 must have been passed along

as part of the state till the end of the protocol.

qMax Fluidity

qSmall State Size

qSecure State
Transfer

Can we use known techniques in the additive attack paradigm?

Maliciously secure Fluid MPC

If the linear combination is computed at the end
the values of 𝑟𝑧 and 𝑧 must have been passed along

as part of the state till the end of the protocol.

qMax Fluidity

qSmall State Size

qSecure State
Transfer

Can we use known techniques in the additive attack paradigm?

If the linear combination is computed
incrementally layer-by-layer

the 𝛼 values will have to be generated on the fly,
which may take many rounds.

qMax Fluidity

qSmall State Size

qSecure State
Transfer

Maliciously secure Fluid MPC: Our Idea

+

XXXXX

XXX +

XXX + +

…

…

…

… … … … …
𝑥! 𝑥% 𝑥$ 𝑥" 𝑥# 𝑥0 𝑥%12! 𝑥%1

Maliciously secure Fluid MPC: Our Idea

+

X

𝛼!

XXXX

XXX +

XXX + +

…

…

…

… … … … …
𝛽! 𝛼% 𝛼$ 𝛼1𝑥! 𝑥% 𝑥$ 𝑥" 𝑥# 𝑥0 𝑥%12! 𝑥%1

Maliciously secure Fluid MPC: Our Idea

+

X

𝛼!

XXXX

XXX +

XXX + +

…

…

…

… … … … …
𝛽! 𝛼% 𝛼$ 𝛼1𝑥! 𝑥% 𝑥$ 𝑥" 𝑥# 𝑥0 𝑥%12! 𝑥%1

𝑧!! 𝑧%! 𝑧$! 𝑧"! 𝑧1!

Maliciously secure Fluid MPC: Our Idea

+

X

𝛼!

XXXX

XXX +

XXX + +

…

…

…

… … … … …
𝛽! 𝛼% 𝛼$ 𝛼1𝑥! 𝑥% 𝑥$ 𝑥" 𝑥# 𝑥0 𝑥%12! 𝑥%1

𝛽% 𝛼!𝛽! 𝛼%𝛽! 𝛼$𝛽! 𝛼1𝛽!𝑧!! 𝑧%! 𝑧$! 𝑧"! 𝑧1!

Maliciously secure Fluid MPC: Our Idea

+

X

𝛼!

XXXX

XXX +

XXX + +

…

…

…

… … … … …
𝛽! 𝛼% 𝛼$ 𝛼1𝑥! 𝑥% 𝑥$ 𝑥" 𝑥# 𝑥0 𝑥%12! 𝑥%1

𝑧!! 𝑧%! 𝑧$! 𝑧"! 𝑧1!

𝑧!% 𝑧%% 𝑧$% 𝑧"% 𝑧1% 𝛽$ 𝛼!𝛽% 𝛼%𝛽% 𝛼$𝛽% 𝛼1𝛽%

𝛽% 𝛼!𝛽! 𝛼%𝛽! 𝛼$𝛽! 𝛼1𝛽!

𝑢3 = 0

Maliciously secure Fluid MPC: Our Idea

+

X

𝛼!

XXXX

XXX +

XXX + +

…

…

…

… … … … …
𝛽! 𝛼% 𝛼$ 𝛼1𝑥! 𝑥% 𝑥$ 𝑥" 𝑥# 𝑥0 𝑥%12! 𝑥%1

𝑧!! 𝑧%! 𝑧$! 𝑧"! 𝑧1!

𝑧!% 𝑧%% 𝑧$% 𝑧"% 𝑧1% 𝛽$ 𝛼!𝛽% 𝛼%𝛽% 𝛼$𝛽% 𝛼1𝛽%

𝛽% 𝛼!𝛽! 𝛼%𝛽! 𝛼$𝛽! 𝛼1𝛽!

𝑢3 = 0

𝑢! = 𝑢3 + 𝛼!𝛽!𝑧!! + 𝛼%𝛽!𝑧%! +⋯+ 𝛼1𝛽!𝑧1!

Maliciously secure Fluid MPC: Our Idea

+

X

𝛼!

XXXX

XXX +

XXX + +

…

…

…

… … … … …
𝛽! 𝛼% 𝛼$ 𝛼1𝑥! 𝑥% 𝑥$ 𝑥" 𝑥# 𝑥0 𝑥%12! 𝑥%1

𝑧!! 𝑧%! 𝑧$! 𝑧"! 𝑧1!

𝑧!% 𝑧%% 𝑧$% 𝑧"% 𝑧1% 𝛽$ 𝛼!𝛽% 𝛼%𝛽% 𝛼$𝛽% 𝛼1𝛽%

𝛽% 𝛼!𝛽! 𝛼%𝛽! 𝛼$𝛽! 𝛼1𝛽!

𝑢3 = 0

𝑢! = 𝑢3 + 𝛼!𝛽!𝑧!! + 𝛼%𝛽!𝑧%! +⋯+ 𝛼1𝛽!𝑧1!

Maliciously secure Fluid MPC: Our Idea

+

X

𝛼!

XXXX

XXX +

XXX + +

…

…

…

… … … … …
𝛽! 𝛼% 𝛼$ 𝛼1𝑥! 𝑥% 𝑥$ 𝑥" 𝑥# 𝑥0 𝑥%12! 𝑥%1

𝑧!! 𝑧%! 𝑧$! 𝑧"! 𝑧1!

𝑧!% 𝑧%% 𝑧$% 𝑧"% 𝑧1% 𝛽$ 𝛼!𝛽% 𝛼%𝛽% 𝛼$𝛽% 𝛼1𝛽%

𝛽% 𝛼!𝛽! 𝛼%𝛽! 𝛼$𝛽! 𝛼1𝛽!

𝑢3 = 0

𝑢! = 𝑢3 + 𝛼!𝛽!𝑧!! + 𝛼%𝛽!𝑧%! +⋯+ 𝛼1𝛽!𝑧1!

Maliciously secure Fluid MPC: Our Idea

+

X

𝛼!

XXXX

XXX +

XXX + +

…

…

…

… … … … …
𝛽! 𝛼% 𝛼$ 𝛼1𝑥! 𝑥% 𝑥$ 𝑥" 𝑥# 𝑥0 𝑥%12! 𝑥%1

𝑧!! 𝑧%! 𝑧$! 𝑧"! 𝑧1!

𝑧!% 𝑧%% 𝑧$% 𝑧"% 𝑧1% 𝛽$ 𝛼!𝛽% 𝛼%𝛽% 𝛼$𝛽% 𝛼1𝛽%

𝛽% 𝛼!𝛽! 𝛼%𝛽! 𝛼$𝛽! 𝛼1𝛽!

𝑢3 = 0

𝑢! = 𝑢3 + 𝛼!𝛽!𝑧!! + 𝛼%𝛽!𝑧%! +⋯+ 𝛼1𝛽!𝑧1!

Epoch 1

Epoch 2

Malicious Security Compiler for Fluid MPC

+

X

𝛼!

XXXX

XXX +

XXX + +

…

…

…

… … … … …
𝛽! 𝛼% 𝛼$ 𝛼1𝑥! 𝑥% 𝑥$ 𝑥" 𝑥# 𝑥0 𝑥%12! 𝑥%1

𝑧!! 𝑧%! 𝑧$! 𝑧"! 𝑧1!

𝑧!% 𝑧%% 𝑧$% 𝑧"% 𝑧1% 𝛽$ 𝛼!𝛽% 𝛼%𝛽% 𝛼$𝛽% 𝛼1𝛽%

𝛽% 𝛼!𝛽! 𝛼%𝛽! 𝛼$𝛽! 𝛼1𝛽!

𝑢3 = 0

𝑢! = 𝑢3 + 𝛼!𝛽!𝑧!! + 𝛼%𝛽!𝑧%! +⋯+ 𝛼1𝛽!𝑧1!

Epoch 1

Epoch 2

qMax Fluidity

qSmall State Size

qSecure State
Transfer

Conclusion and Open Questions

• Exciting new direction.
• Communication Complexity semi-honest Fluid BGW is 𝑂 𝑛. 𝐶 .
• Our compiler preserves the fluidity and communication complexity of

the underlying semi-honest protocol, but only achieves security with
abort.
• Open Questions:
• Improved efficiency
• Guaranteed output delivery
• Exploring other modeling choices

Thank You
aarushig@cs.jhu.edu

https://eprint.iacr.org/2020/754

