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Adversary learns the same amount of information in the two scenarios 
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• MPC protocols are becoming increasingly efficient.
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• Optimization programs over a complex, high dimensional space, where the 

constraints of the dimensions are held by different players.

• The circuit representations of these computations could be extremely 
deep. 
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Efficient MPC and Emerging Applications

• MPC protocols are becoming increasingly efficient.
• Can be used to compute complex functionalities such as:
• Training machine learning algorithms on massive, distributed datasets.
• Simulating large RAM programs on distributed datasets
• Optimization programs over a complex, high dimensional space, where the 

constraints of the dimensions are held by different players.

• The circuit representations of these computations could be extremely 
deep. 

Issue: Evaluating these functionalities could take up to several 
hours or even days.
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Prior Work: Static MPC

Round 3 … …Round 1 Round 2

Requiring all participants to stay online throughout the computation is an 
unrealistic expectation.Can we design MPC protocols with Dynamic Participants?
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MPC with Dynamic Participants

This reduces the burden of computation on individual parties 

While parties with more time and computational resources can 
help with the computation for a longer time



MPC with Dynamic Participants

This will result in a weighted, privacy preserving distributed 
computing system.
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• Powered by volunteer nodes- that can come 
and go as they wish.

• Very Successful!

Dynamic Peer-to-peer networks.

• Allows Participants to join and leave at will
• Reduces burden of computation on individual 

participants

MPC with Dynamic Participants

Compatible with each other
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MPC as a Service

Dynamic Peer-to-peer networks.MPC with Dynamic Participants

Volunteer networks capable of private computation. 

MPC-as-a-service framework - anyone can volunteer to participate 
irrespective of their computational power or availability.

Clients can delegate computations to such services.
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players can be replaced by new ones.

• Blockchains [GHMVZ17]: This idea is used in the design of Algorand.
• Helps mitigate targeted attacks on chosen participants after their identity is 

revealed.

• It would be great if this idea can be extended to MPC.
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Our Contributions

Implementation of our maliciously secure protocol based on BGW

Fluid MPC: A formal model for MPC with dynamic participants

Semi-Honest BGW protocol can be adapted to the Fluid MPC setting

A compiler that transforms “certain” semi-honest Fluid MPC protocols into 
maliciously secure protocols:

• security with abort
• 2 × communication complexity 
• Preserves fluidity

Fluid MPC: A formal model for MPC with dynamic participants

Fluidity is the minimum commitment a party needs to make for participating in the protocol.

Semi-Honest BGW protocol can be adapted to the Fluid MPC setting, 
where each party is required to speak only in one round (max fluidity)
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Modeling Dynamic Computation

• Client-server model
• Clients delegate computation to volunteer servers

Input Stage Execution Stage Output Stage

Clients pre-process 
their inputs and 

hand them to the 
servers

Dynamic servers participate to compute the function Clients reconstruct 
the output of the 

function
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Compute Phase Hand-off Phase Compute Phase Hand-off PhaseCompute Phase Hand-off Phase

Epoch 𝑖 Epoch 𝑖+1 Epoch 𝑖+2

Committee 𝑆& Committee 𝑆&'! Committee 𝑆&'%

… …
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• Clients: Honest Majority or Dishonest majority
• Servers: Honest Majority or Dishonest majority

• Honest majority of clients
• Honest majority of servers in each committee

Our Choice
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What effect does corrupting a server have on the prior epochs where it participated?

Similar to being passively corrupted in prior epochs

Adv learns this private state

If there is overlap across committees, a server can only be 
corrupted if it does not violate the corruption threshold of 

prior epochs.

Can be prevented by only allowing disjoint committees

Effect of Committee Corruption on Prior Epochs
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Requirements: Small State Complexity

Since states need to be transferred after every epoch, state complexity has a 
direct effect on communication complexity

State size of each party should be independent of the depth of the circuit

Hand-off Phase



Requirements: High Fluidity
Compute Phase Hand-off Phase Compute Phase Hand-off PhaseCompute Phase Hand-off Phase

Committee 𝑆& Committee 𝑆&'! Committee 𝑆&'%

Fluidity is the minimum commitment a server needs to make for participating in the protocol.

Measured by the number of rounds in an epoch 



Maximal Fluidity
Compute Phase Hand-off Phase Compute Phase Hand-off PhaseCompute Phase Hand-off Phase

Committee 𝑆& Committee 𝑆&'! Committee 𝑆&'%

1 Round of 
unidirectional 

hand-off phase

Essentially, each party is only 
required to communicate in one 

round

1 round epoch

Our Choice

Silent compute 
phase
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Requirements: Secure State Transfer
Hand-off Phase

Adv learns the private state 
of 2 out of 3 parties in the 

first committee



Requirements: Secure State Transfer
Hand-off Phase

This naïve way handing-off states between committees in a one-to-one 
manner could break privacy.

Need a secure state transferring mechanism



Requirements: Checklist

qMax Fluidity

qSmall State Size

qSecure State 
Transfer
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Committee Selection/Corruption Protocol Execution given these Committees

Committee Formation 

Committee Corruption 

Effect of Committee 
Corruption on Prior Epochs

Requirements/Challenges

Semi-Honest

Malicious
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Need to Verify Honest Behavior

Implementing a gate-by-gate check
Requires more interaction

Using NIZKs
May require access to all prior rounds

q Max Fluidity

q Small State Size

q Secure State 
Transfer
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𝜀 additive errors are independent of the actual wire values
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Maliciously secure Fluid MPC

Additive Attack Paradigm?

We want this transformation to preserve the communication complexity and 
fluidity of fluid BGW

Observation: Additive Attack Paradigm extends to the Fluid MPC 
setting in a natural way
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Can we use known techniques in the additive attack paradigm?

If the linear combination is computed 
incrementally layer-by-layer

the 𝛼 values will have to be generated on the fly, 
which may take many rounds.

qMax Fluidity

qSmall State Size

qSecure State 
Transfer
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Conclusion and Open Questions

• Exciting new direction.
• Communication Complexity semi-honest Fluid BGW is 𝑂 𝑛. 𝐶 .
• Our compiler preserves the fluidity and communication complexity of 

the underlying semi-honest protocol, but only achieves security with 
abort.
• Open Questions:
• Improved efficiency
• Guaranteed output delivery
• Exploring other modeling choices



Thank You
aarushig@cs.jhu.edu

https://eprint.iacr.org/2020/754


