
Collaborative zk-SNARKs
Proving as One over Distributed Secrets

Aarushi Goel

Simons – Proofs Workshop | Summer 2025

zk-SNARKs
Zero-Knowledge Succinct Non-Interactive Arguments of Knowledge

𝐿 ∈ 𝑁𝑃

𝑥 ∈ 𝐿 Okay, I
believe you

Prover Verifier

𝜋

𝜋 is computed by a single prover who knows the witness corresponding to 𝑥

What if a single prover does not have the entire witness?
Aggregate Healthcare Statistics

Collectively prove that they do not charge the same price for insured and uninsured patients
Without revealing patient records

What if a single prover does not have the entire witness?
Private Audits of Financial Transactions

$100 $200

Collectively prove whether Alice transferred money to Bob and Bob to Charlie
Without reveal other financial transactions

Common Factors in these Examples

No single entity has the entire witness

No single entity knows whether the statement is true

Multiple entities want to collectively generate a single proof

They do not want to share their private witnesses with each other

Collaborative zkSNARKs [Ozdemir-Boneh’22]

𝐿 ∈ 𝑁𝑃 Okay, I
believe you

Provers Verifier

𝑥, 𝜋

Soundness Succinctness

𝑤!

𝑤"

𝑤#

𝜋 verifies iff 𝑅! 𝑥, 𝑤", 𝑤#, 𝑤$ = 1 𝜋 is short

Collaborative zkSNARKs [Ozdemir-Boneh’22]

𝐿 ∈ 𝑁𝑃

Provers Verifier

𝑥, 𝜋𝑤!

𝑤"

𝑤#

t-Zero-Knowledge
The Verifier and corrupt provers should not learn 𝑤$ even if 𝑥 ∉ 𝐿

This is stronger than
regular zero-knowledge

Okay, I
believe you

Different from Other Multi-Prover Notions

Non-privacy preserving distributed proof generation
[Wu-Zhang-Chiesa-AdaPopa-Stoica’18]

Multi-prover Interactive Proofs (MIPs)
[Ben-Or-Goldwasser-Kilian-Wigderson’88]

Provers Verifier

𝑤

𝑤

𝑤

𝑤

𝜋

Delegating proof computation to a compute cluster

Constructing Collaborative zk-SNARKs

Compute a zk-SNARK using a secure multiparty computation protocol

Where is the non-triviality?
zk-SNARKs are cryptographic computations. Computing them using MPC will incur large overheads.

[OB’22] Approach for Constructing Collaborative zkSNARKs

Typical zk-SNARKs

Short witness ⇢ Extended witness
(Simple Field Operations)

Compute proof using extended witness
(Cryptographic Operations + Field Operations)

Collaborative zk-SNARKs

Generic MPC for generating extended witness

Custom MPC for computing proof given
extended witness

[OB’22] Approach for Constructing Collaborative zkSNARKs

Typical zk-SNARKs

Short witness ⇢ Extended witness
(Simple Field Operations)

Compute proof using extended witness
(Cryptographic Operations + Field Operations)

Collaborative zk-SNARKs

Generic MPC for generating extended witness

This MPC must check validity of
joint witness before proceeding with

proof computation.

[Garg-G-Jain-Sekar-Roberts 25]
Else, loss of input privacy!!

Custom MPC for computing proof given
extended witness

Rest of this talk will focus on

Custom MPC for computing proof given
extended witness

Custom MPC for computing proof given extended witness

Any Existing Malicious

 Security Compiler

MPC Secure against a
Semi-honest Adversary

MPC Secure against a
Malicious Adversary

Main novelty of all
prior work lies here

Custom MPC for computing proof given extended witness
(MPC Secure against a Semi-honest Adversary)

Multi-Scalar Multiplications (MSM)

Fast Fourier Transform (FFT)

Partial Products

Polynomial Multiplication and Division

𝐹 𝑔!, 𝛼!, … , 𝑔$, 𝛼$ = -
%∈[$]

𝑔%)! 𝐹 𝑥!, … , 𝑥$ = -
%∈[*]

𝑥%
*∈[$]

For converting between coefficient
and evaluation representation of

polynomials

A combination of addition,
multiplication and FFT operations

Prior Work: Designing efficient MPC for functions of the following form

(MPC Secure against a Semi-honest Adversary)

Multi-Scalar Multiplications (MSM)

Fast Fourier Transform (FFT)

Partial Products

Polynomial Multiplication and Division

𝐹 𝑔!, 𝛼!, … , 𝑔$, 𝛼$ = -
%∈[$]

𝑔%)! 𝐹 𝑥!, … , 𝑥$ = -
%∈[*]

𝑥%
*∈[$]

For converting between coefficient
and evaluation representation of

polynomials

A combination of addition,
multiplication and FFT operations

Prior Work: Designing efficient MPC for functions of the following form

Custom MPC for computing proof given extended witness

Academia Industry

[Ozdemir-Boneh’22]

[Garg-G-Jain-Policharla-Sekar’23]

[Liu-Zhou-Wang-He-Zhang-Yang-Zhang’24]

[Liu-Zhou-Wang-Zhang-Yang’24]

[Garg-G-Kolonelos-Sinha’25]

Custom MPC for computing proof given extended witness

Any Existing Malicious

 Security Compiler

MPC Secure against a
Semi-honest Adversary

MPC Secure against a
Malicious Adversary

Incurs additional
overhead!

Can we minimize (or eliminate this overhead?)
[Garg-G-Jain-Sekar-Roberts’25]

Semi-honest
Collaborative zk-SNARK

Maliciously Secure
Collaborative zk-SNARK

Additive Attack Paradigm
[Genkin-Ishai-Prabhakaran-Sahai-Tromer’14]

Honest majority

setting
Many secret-sharing based semi-honest MPC protocols

are also reasonably secure against malicious adversaries.

Additive Attack Paradigm
[Genkin-Ishai-Prabhakaran-Sahai-Tromer’14]

Many secret-sharing based semi-honest MPC protocols
are also reasonably secure against malicious adversaries.

×

×
+

[𝑎] [𝑏] [𝑐] [𝑑]

[𝑎	×	𝑏] [(𝑐 + 𝑑)]

[𝑎	×	𝑏 	×	(𝑐 + 𝑑)]

Honest majority

setting

Additive Attack Paradigm
[Genkin-Ishai-Prabhakaran-Sahai-Tromer’14]

Many secret-sharing based semi-honest MPC protocols
are also reasonably secure against malicious adversaries.

Private until output reconstruction

×

×
+

[𝑎] [𝑏] [𝑐] [𝑑]

[𝑎	×	𝑏] [(𝑐 + 𝑑)]

[𝑎	×	𝑏 	×	(𝑐 + 𝑑)]

Honest majority

setting

Additive Attack Paradigm
[Genkin-Ishai-Prabhakaran-Sahai-Tromer’14]

Many secret-sharing based semi-honest MPC protocols
are also reasonably secure against malicious adversaries.

Private until output reconstruction

Injecting arbitrary additive errors
×

×
+

𝑎 𝑏 𝑐 𝑑

𝑎	×	𝑏 + 𝜀! 𝑐 + 𝑑

𝑎	×	𝑏 + 𝜀! 	×	(𝑐 + 𝑑) + 𝜀"

Honest majority

setting

Semi-Honest → Malicious Security
(General Strategy)

×

×
+

[𝑎] [𝑏] [𝑐] [𝑑]

[𝑎	×	𝑏] [(𝑐 + 𝑑)]

[𝑎	×	𝑏 	×	(𝑐 + 𝑑)]
Use a semi-honest MPC to compute

 secret shares of the output

Verify correctness of computation

Reconstruct the output

Semi-Honest → Malicious Security

×

×
+

[𝑎] [𝑏] [𝑐] [𝑑]

[𝑎	×	𝑏] [(𝑐 + 𝑑)]

[𝑎	×	𝑏 	×	(𝑐 + 𝑑)]
Use a semi-honest MPC to compute secret shares of the
output (Sometimes two copies of the protocol are used)

Verify correctness of computation

Reconstruct the output

[Damgard-Pastro-Smart-Sarah Zakarias’12]
[Chida-Genkin-Hamada-Ikarashi-Kikuchi-Lindell-Nof’18]

[Genkin-Ishai-Prabhakaran-Sahai-Tromer’14]
[Lindell-Nof’17]

[Nordholt-Veeningen’18]
[Furukawa-Lindell’19]
[Goyal-Song-Zhu’20]

[Boneh-Boyle-Corrigan-Gibbs-Gilboa-Ishai’19]
[Boyle-Gilboa-Ishai-Nof’19]
[Boyle-Gilboa-Ishai-Nof’20]
[Boyle-Gilboa-Ishai-Nof’21]
[Dalskov-Escudero-Nof’24]

Can we get malicious security for free?

[Garg-G-Jain-Sekar-Roberts’25]

In the honest-majority setting

If the adversary can inject errors, how can
we even hope to get output correctness?

We want to compute zk-SNARKs using MPC

MPC does not need to enforce correctness of computed proof
We can simply check whether the proof successfully verifies

Proofs are self-verifying

Our Idea

MPC with standard
malicious security

MPC secure up to
additive attacks

MPC with
 𝐿-malicious security

For certain types
of functions

For all self-
verifying functions

Will explain on
the next slide

Our Idea

MPC with standard
malicious security

MPC secure up to
additive attacks

MPC with
 𝐿-malicious security

For certain types
of functions

For all self-
verifying functions

Will explain on
the next slide

Relaxed Notion of Maliciously Secure MPC

𝑥!
𝑦 𝑥#, 𝐿

𝑦 = 𝐿(𝑓 𝑥!, 𝑥", 𝑥#)

𝑥"

𝑦

𝑦

Some affine function

𝐿-Malicious Security

When computing proofs, an 𝐿-Maliciously Secure MPC implies standard malicious security

Our Idea

MPC with standard
malicious security

MPC secure up to
additive attacks

MPC with
 𝐿-malicious security

For certain types
of functions

For all self-
verifying functions

Our Idea

MPC with standard
malicious security

MPC secure up to
additive attacks

MPC with
 𝐿-malicious security

For certain types
of functions

For all self-
verifying functions

Example 1: Affine Functions
𝑓!,#,$ 𝑥%, 𝑥&, 𝑥' = 𝐴. 𝑥% + 𝐵. 𝑥& + 𝐶. 𝑥' + 𝐷

Assuming 𝑥!, 𝑥", 𝑥#	are secret shared, while 𝐴, 𝐵, 𝐶, 𝐷 are constants

From [GIPST14], this simulator extracts corrupt inputs and errors
while generating an indistinguishable view for all but the last round.

How to Simulate?

𝑆𝑖𝑚+,-./:

𝑆𝑖𝑚+,-./:

𝑆𝑖𝑚:

Simulate last message using 𝑦

Honest parties’ output = 𝑦

𝑥!
𝑦 𝑥#, 𝐼𝑑

𝑦 = 𝑓 𝑥!, 𝑥", 𝑥#

𝑥"
𝑦

𝑦

No errors!

Example 2: Degree-Two Computations

How to Simulate?

𝑥!
𝑦 + 𝜀 𝑥#, 𝐿0

𝑦 = 𝑓 𝑥!, 𝑥", 𝑥#

𝑥"
𝑦 +

𝜀

𝑦 + 𝜀

𝑓!,# 𝑥%, 𝑥&, 𝑥' = 𝑥%. 𝑥& + 𝐴. 𝑥' + 𝐵
Assuming 𝑥!, 𝑥", 𝑥#	are secret shared, while 𝐴, 𝐵 are constants

Additive error 𝜀
can be introduced

𝑆𝑖𝑚+,-./:

𝑆𝑖𝑚:

Simulate last message using 𝑦 + 𝜀

Honest parties’ output = 𝑦 + 𝜀

How is an MPC for such simple
functions useful?

Computation of [Groth’16] Proofs can be expressed as a degree-2
computation over the extended witness

𝑡 −Zero-Knowledge is different from standard malicious security

In 𝑡 −zero-knowledge, the simulator does not have oracle access to the proof functionality.
It only learns a bit indicating validity of joint witness.

Maliciously Secure
Collaborative [Groth16] Proof Generation

How to Simulate?

this simulator exists from zero-knowledge property of Groth16 zk-SNARKs𝑆𝑖𝑚12:

𝑏 =?= 𝑅E 𝑥,𝑤F, 𝑤G, 𝑤H

𝑆𝑖𝑚+,-./

𝑆𝑖𝑚:

Simulate last message using 𝜋 + 𝜀
Honest parties’ output = 𝜋 + 𝜀

𝑏 ∈ {0,1}
𝑆𝑖𝑚12:𝑏 𝜋

(Determined by the MPC for
generating extended witness)

Example 3: Special Randomized Functions
𝑓 𝑥%, 𝑥&; 𝑟	 = 𝑟. (𝑥%. 𝑥&)

Assuming 𝑥!, 𝑥"	are arbitrary secret shared inputs,
while 𝑟 is a secret shared random input

Honestly computed output

𝑟. (𝑥F. 𝑥G) 𝑟. (𝑥F. 𝑥G + 𝜀F) + 𝜀G

Adversarially computed output

Both are uniformly distributed.

𝑆𝑖𝑚%&'()As a result, given , the adversary’s view in the last round of the MPC can be
easily simulated

Example 4: Randomized Encodings

𝑓 𝑥%, 𝑥&, 𝑥', 𝑥(= 𝑥%. 𝑥&. 𝑥'. 𝑥(
Sequential multiplication over secret shared values

[Bar-Ilan-Beaver’89]: Constant round MPC for sequential multiplications.

Reduces to computing special randomized functions over secret shared values

zk-SNARKs in ROM

Depends on 𝑀𝑠𝑔"

Prover Verifier

Fiat-Shamir

𝑀𝑠𝑔!

𝑀𝑠𝑔"

𝑀𝑠𝑔# Prover Verifier

𝑀𝑠𝑔!, 𝑀𝑠𝑔", 𝑀𝑠𝑔#

zk-SNARKs in ROM

Prover Verifier

Fiat-Shamir

𝑀𝑠𝑔!

𝑀𝑠𝑔"

𝑀𝑠𝑔# Prover Verifier

𝑀𝑠𝑔!, 𝑀𝑠𝑔", 𝑀𝑠𝑔#

Depends on 𝑀𝑠𝑔", 𝑀𝑠𝑔#

Collaborative Variants of zk-SNARKs in ROM

Provers

Run an MPC to compute 𝑀𝑠𝑔"
Reconstruct 𝑀𝑠𝑔" to query RO

Run an MPC to compute 𝑀𝑠𝑔#

Reconstruct 𝑀𝑠𝑔# to query RO
.
.
.

If each 𝑀𝑠𝑔P can be computed using one of the example functions, then
this overall yields an 𝐿 −Maliciously secure MPC for reactive functions

Our Results

Collaborative Version: Collaborative Version: [Ozdemir-Boneh’22]

We can get free malicious security for these collaborative zk-SNARKs

Open Problems

• What other functions can be computed using semi-honest MPC with free
malicious security?

• Can these ideas be extended to the dishonest-majority setting?

• Exploring other types of collaborative zk-SNARKs (e.g., those based on
packed secret-sharing).

• Investigating applications of collaborative zk-SNARKs.

Thanks!

