Collaborative zk-SNARKs

Proving as One over Distributed Secrets

Aarushi Goel
PURDUE

IIIIIIIIII

Simons - Proofs Workshop | Summer 2025

zk-SNARKs

Zero-Knowledge Succinct Non-Interactive Arguments of Knowledge

L eNP

Okay, |
believe you

N
@

X EL

Prover Verifier

T iIs computed by a single prover who knows the witness corresponding to x

What if a single prover does not have the entire withess?
Aggregate Healthcare Statistics

HHHHHHHH

gunn | " O " | gunn
HER i====irr“ l;---EQE--I::
|| . | i e Gl sl I
Jra=l TES Y 1L BT
= " '\“ g

Collectively prove that they do not charge the same price for insured and uninsured patients

Without revealing patient records

What if a single prover does not have the entire withess?

Private Audits of Financial Transactions

N P

Q"// o WQPNCBANK
e

'\“HASE €

Collectively prove whether Alice transferred money to Bob and Bob to Charlie

Without reveal other financial transactions

Common Factors in these Examples

No single entity knows whether the statement is true
Multiple entities want to collectively generate a single proof

They do not want to share their private witnesses with each other

Collaborative zkSNARKs [Ozdemir-Boneh’22]

L eNP Okay, |
W3 r\ believe you
.
Provers Q W» Verifier
\
Soundness Succinctness

m verifies iff Ry (x, wy, wo,w3) =1 T is short

Collaborative zkSNARKs [Ozdemir-Boneh’22]

L eNP Okay, |
W3 P\ believe you
- i\

y /
Provers 'Wz Verifier

\
This is stronger than
t-Zero-Kn OWledge regular zero-knowledge

The Verifier and corrupt provers should not learn w3 evenif x € L

-8

w

w

Multi-prover Interactive Proofs (MIPs)
[Ben-Or-Goldwasser-Kilian-Wigderson’88]

o
~
®
~

Provers

Different from Other Multi-Prover Notions

- e

Verifier

Non-privacy preserving distributed proof generation
[Wu-Zhang-Chiesa-AdaPopa-Stoica’18]

'\W:\|i\|
® - JINNS

Delegating proof computation to a compute cluster

Constructing Collaborative zk-SNARKs

Compute a zk-SNARK using a secure multiparty computation protocol

I Elins yyoufldaye

too m'tl-c'h time
onh your hands

Where is the non-triviality?
zk-SNARKSs are . Computing them using MPC will incur large overheads.

Approach for Constructing Collaborative zkSNARKs

Typical zk-SNARKs

‘E G g
f
, \

<o K f/

Short witness > Extended witness
(Simple Field Operations)

Compute proof using extended witness
(Cryptographic Operations + Field Operations)

Collaborative zk-SNARKSs

BT b
. -~ - =7
M\ A

Generic MPC for generating extended witness

r\

e . L)
J\ /
?

Custom MPC for computing proof given
extended withess

Approach for Constructing Collaborative zkSNARKs

This MPC must check validity of Collaborative zk-SNARKs
joint witness before proceeding with

proof computation. & r |
e \. wy/
r\g I -

Generic MPC for generating extended witness

ﬁ

AElse, loss of input privacy!! ;/ \
° /
\Q

\

Custom MPC for computing proof given
extended withess

Rest of this talk will focus on

Custom MPC for computing proof given
extended withess

Custom MPC for computing proof given extended witness

Main novelty of all
prior work lies here

Any Existing Malicious
—
Security Compiler

MPC Secure against a MPC Secure against a
Semi-honest Adversary Malicious Adversary

Custom MPC for computing proof given extended witness

Multi-Scalar Multiplications (MSM)

F(g1;a1; o Imo am) = 1_[giai

ie[m]

Fast Fourier Transform (FFT)

For converting between coefficient
and evaluation representation of
polynomials

Prior Work: Designing efficient MPC for functions of the following form

Partial Products
recem = ([]x)
ie[Jj] je[m]
Polynomial Multiplication and Division

A combination of addition,
multiplication and FFT operations

Custom MPC for computing proof given extended witness

[Ozdemir-Boneh’22]

v
2 webb
[Garg-G-Jain-Policharla-Sekar’23]

[Liu-Zhou-Wang-He-Zhang-Yang-Zhang’24]

T'ANIT 7 A NI
AV) \G Jia Vg
ON CHAIN DARK POOL

[Liu-Zhou-Wang-Zhang-Yang’24]

[Garg-G-Kolonelos-Sinha’25]

TAC=D

Custom MPC for computing proof given extended witness

Incurs additional
overhead!

Any Existing Malicious
—
Security Compiler

MPC Secure against a MPC Secure against a
Semi-honest Adversary Malicious Adversary

Can we minimize (or eliminate this overhead?)
[Garg-G-Jain-Sekar-Roberts’25]

Semi-honest Maliciously Secure
Collaborative zk-SNARK Collaborative zk-SNARK

Additive Attack Paradigm

Many secret-sharing based semi-honest MPC protocols
are also reasonably secure against malicious adversaries.

T °

Additive Attack Paradigm

Many secret-sharing based semi-honest MPC protocols
are also reasonably secure against malicious adversaries.

[(ax b) X (c+d)]

[(a x b)] [(c +d)]

Additive Attack Paradigm

Many secret-sharing based semi-honest MPC protocols
are also reasonably secure against malicious adversaries.

[(a X b) X (c+d)]

1 Private until output reconstruction

[(a x)] [(c +d)]

]

la] [p] el [d]

Additive Attack Paradigm

Many secret-sharing based semi-honest MPC protocols
are also reasonably secure against malicious adversaries.

(axb+e&)X(c+d)+e,

(a X b) + & (c +d) 2 Injecting arbitrary additive errors

Semi-Honest — Malicious Security

[(a X b) X (c +d)]

[(a x b)]

[(c +d)]

Use a semi-honest MPC to compute
secret shares of the output

4

Verify correctness of computation

4

Reconstruct the output

Semi-Honest — Malicious Security

[Damgard-Pastro-Smart-Sarah Zakarias’12]
[Chida-Genkin-Hamada-lkarashi-Kikuchi-Lindell-Nof’18]
[Genkin-Ishai-Prabhakaran-Sahai-Tromer’14]
[Lindell-Nof’17]
[Nordholt-Veeningen’18]
[Furukawa-Lindell’19]
[Goyal-Song-Zhu’20]
[Boneh-Boyle-Corrigan-Gibbs-Gilboa-lshai’19]
[Boyle-Gilboa-Ishai-Nof’19]
[Boyle-Gilboa-Ishai-Nof’20]
[Boyle-Gilboa-Ishai-Nof’21]
[Dalskov-Escudero-Nof’24]

? Can we get malicious security for free?
In the honest-majority setting

WHAT KIND OF SORGERY IS THIS

s‘ LA S WAV

11"'4 VAVA
i e
(

WHAT KIND OF SORCERY IS THIS

We want to compute zk-SNARKs using MPC

Proofs are self-verifying

MPC does not need to enforce correctness of computed proof
We can simply check whether the proof successfully verifies

B . Our ldea

Will explain on

the next slide

For certain types

of functions

MPC secure up to . MPC with

additive attacks L-malicious security

For all self-
verifying functions

\ 4
MPC with standard
malicious security

Will explain on

the next slide

MPC with
L-malicious security

For all self-
verifying functions

\ 4
MPC with standard
malicious security

Relaxed Notion of Maliciously Secure MPC

Some affine function

When computing proofs, an MPC implies standard malicious security

B . Our ldea

For certain types

of functions

MPC secure up to . MPC with

additive attacks L-malicious security

For all self-
verifying functions

\ 4
MPC with standard
malicious security

B . Our ldea

For certain types

of functions
MPC secure up to . MPC with
additive attacks L-malicious security

Example 1: Affine Functions

fA,B,C(xl;xz;xg) =A.x;+B.x, + C.x3 +D Noerrors!

Assuming x4, X,, X3 are secret shared, while 4, B, C, D are constants

How to Simulate?

From [GIPST14], this simulator extracts corrupt inputs and errors

SiMiast: while generating an indistinguishable view for all but the last round.

P\ y = f(xlerth)
x.
\ * [
x3, \
\ % % h y Sim<last: é‘

q Simulate last message using y

%
Q A/ﬂ/v Honest parties’ output =y

v

Example 2: Degree-Two Computations

_ Additive error ¢
fA,B (xlr X2, XB) _ A. X3 + B can be introduced
shared

Assuming x4, x,, X3 are secret ~djle 4, B are constants /

How to Simulate?

y = f(xlerJxS)

Sim:

% x3, L

% % y + ¢ Sim<last: é‘
/ Simulate last message usingy + ¢
/ Honest parties’ output =y + ¢

<« How is an MPC for such simple
functions useful?

A / Computation of [Groth’16] Proofs can be expressed as a degree-2
computation over the extended witness

t —Zero-Knowledge is different from standard malicious security

In t —zero-knowledge, the simulator does not have oracle access to the proof functionality.
It only learns a bit indicating validity of joint withess.

Maliciously Secure
Collaborative Proof Generation

Sim,,: this simulator exists from zero-knowledge property of Groth16 zk-SNARKs

How to Simulate?

(Determined by the MPC for

[
b ="= RL (x: W1, W2, W3) generating extended witness)

be{0,1}

Simulate last message using T + ¢

Honest parties’ output=m + ¢

Example 3: Special Randomized Functions

fQy,x251) =1.(%X1. %2)
Assuming x4, x, are arbitrary secret shared inputs,
while 7 is a secret shared random input

Honestly computed output Adversarially computed output

. (X1.%7) r.(X1.X3 + &) + &

Both are uniformly distributed.

As aresult, given Simcgst, the adversary’s view in the last round of the MPC can be
easily simulated

Example 4. Randomized Encodings
f(x1, X2, X3, %4) = X1.X3. X3. X4

Sequential multiplication over secret shared values

‘Bar-llan-Beaver'89]: Constant round MPC for sequential multiplications.

Reduces to computing special randomized functions over secret shared values

zk-SNARKs in ROM

Msg, ‘ Depends on Msg,
I I : Msg,) I |! Fiat-Shamir I Msgi, Msg,, Msgs : ’

Msgs

Verifier Prover Verifier

Prover

zk-SNARKs in ROM

Msg, ‘ Depends on Msg4, Msg,
.) Mng “ Fiat-Shamir . MSgl; Mng; MSg3 , “!
Msgs g 3
Prover > Verifier Prover Verifier

Collaborative Variants of zk-SNARKs in ROM

Run an MPC to com
{ ‘ pute Msg,
‘ Reconstruct Msg4 to query RO

Run an MPC to compute Msg,

-

\ Reconstruct Msg, to query RO

Provers

If each Msg; can be computed using one of the example functions, then
this overall yields an L —Maliciously secure MPC for reactive functions

Our Results

Bulletproofs: Short Proofs for Confidential Transactions and More PlonK: Permutations over Lagrange-bases for

Benedikt Biinz*!, Jonathan Bootle!?, Dan Boneh'?, Oecumenical Noninteractive arguments of
Andrew Poelstra’®, Pieter Wuille¥®, and Greg Maxwelll Knowledge

'Stanford University
2University College London

3Blockstream Ariel Gabizon*® Zachary J. Williamson Oana Ciobotaru
Aztec Aztec Pi Squared
;PR BT
Full Version July 17, 2025
Abstract Abstract
We propose Bulletproofs, a new non-interactive zero-knowledge proof protocol with very . o ar - . «
short proofs and without a trusted setup; the proof size is only logarithmic in the witness size. t .Zl:SNAR'K consni'.utcl:mns t.hdt E:thu[én. uP:dtla ble Em;(e?;l:};l;{lc_t(lf;(e(\i;f fen:;}(ie
Bulletproofs are especially well suited for efficient range proofs on committed values: they enable SiTing remove l(()nef (;\'1' “e mamlo M;CKCI\Sl m e.p 0};;\051 o hb :1[’ M) . lle
prow ing that a committed value is in a range using only 2log (n) + 9 group and field elementsA 1mpoftam, \\'(‘)r' of val er et al. [N . 1] Pr,esef“ d Sonic - ¢ . st p.ote?tla' ¥
A N e R R e e e G O P R O e e s e S G PR practical zk-SNARK with fully succinct verification for general arithmetic circuits

Collaborative Version: SR T Collaborative Version:

We can get free malicious security for these collaborative zk-SNARKSs

Open Problems

* What other functions can be computed using semi-honest MPC with free
malicious security?

* Can these ideas be extended to the dishonest-majority setting?

* Exploring other types of collaborative zk-SNARKs (e.g., those based on
packed secret-sharing).

* Investigating applications of collaborative zk-SNARKs.

Thanks!

