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Secure Multiparty Computation (MPC)

𝑥!

𝑥"𝑥#

𝑥$

MPC protocol for computing 𝑦 = 𝑓(𝑥!, 𝑥#, 𝑥$, 𝑥")

Adversary learns nothing beyond the 
output 𝑦



Secure MPC Reduction

A secure protocol for computing 
𝑓 assuming parties have oracle 

access to 𝑔.

Securely computing a 
function 𝑓

Securely computing a 
simpler functionality 𝑔

Reduction

𝑥!

𝑥"𝑥#

𝑥$

𝑔

Given such a reduction, we only need to 
design a secure protocol for the simpler 

functionality 𝑔.

Classical Examples: [Yao’86, GMW’90] show 
such a secure reduction from any polynomial 

function to a two-party OT functionality



Non-interactive MPC Reduction

A non-interactive secure protocol 
for computing 𝑓 assuming parties 

have oracle access to 𝑔.

Securely computing a 
function 𝑓

Securely computing a 
simpler functionality 𝑔

Non-interactive
Reduction

𝑥!

𝑥"𝑥#

𝑥$

𝑔
Parties only make a single call to oracle 𝑔, 

but do not talk to each other.

• Functionality 𝑔 is allowed to have internal 
randomness  

• There exists a general non-interactive 
reduction from such functionalities to 
deterministic ones [IK’02, AIK’04]. 



Elementary MPC Reduction

A non-interactive secure protocol 
for computing 𝑓 assuming parties 

have oracle access to 𝑔.

Securely computing a 
function 𝑓

Securely computing a 
simpler functionality 𝑔

Non-interactive
Reduction

𝑥!

𝑥"𝑥#

𝑥$

𝑔
Parties only interact with the oracle 𝑔, not 

amongst themselvesA non-interactive reduction is elementary if

𝑔 is a constant degree functionality

A PRG can only be used by the reduc>on in a
black−box way

𝑔 is independent of PRG



Elementary Reduction
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𝑔 is a constant degree functionality and is independent of PRG



Elementary Reduction

Result Corruption Functions Security Security
[Yao’86, BMR’90] 𝑡 < 𝑛 P/Poly Passive Full Security

[DI’05] 𝑡 < 𝑛/2 P/Poly Active Full Security 

[IK’00] 𝑡 < 𝑛 NC1 Active (IT) Full Security

[IPS’08, LPSY’15] 𝑡 < 𝑛 P/Poly Active Security with Abort
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Elementary Reduction

Result Corruption Functions Security Security
[Yao’86, BMR’90] 𝑡 < 𝑛 P/Poly Passive Full Security

[DI’05] 𝑡 < 𝑛/2 P/Poly Active Full Security 

[IK’00] 𝑡 < 𝑛 NC1 Active (IT) Full Security

[IPS’08, LPSY’15] 𝑡 < 𝑛 P/Poly Active Security with Abort

?? 𝑡 < 𝑛 P/Poly Active Full Security

Main Question: Does an elementary reduction exist in this setting?

[AIK05] shows (non-elementary) non-interactive 
reduction in this setting to a constant-degree 

function 𝑔, but 𝑔 depends on PRG (in NC1)



Our Contributions

Result Corruption Functions Security Security
[Yao’86, BMR’90] 𝑡 < 𝑛 P/Poly Passive Full Security

[DI’05] 𝑡 < 𝑛/2 P/Poly Active Full Security 

[IK’00] 𝑡 < 𝑛 NC1 Active (IT) Full Security

[IPS’08, LPSY’15] 𝑡 < 𝑛 P/Poly Active Security with Abort

Unlikely 𝑡 < 𝑛 P/Poly Active Full Security

Exists 𝑡 < 𝑛 P/Poly Active Identifiable Abort



Our Contributions (Lower Bound)

Result Corruption Functions Security Security
Unlikely 𝑡 < 𝑛 P/Poly Active Full Security

For 𝑛 = 2, existence of such an 
elementary reduction with 

partial fairness

No black-box 
calls to PRG

Fairness when only 
one party is corrupt

Existence of an information theoretic elementary reduction from any 
function in P/Poly to a constant degree function in the CRS model with 
inverse-polynomial average-case privacy against passive adversaries.



Our Contributions (Lower Bound)

Result Corruption Functions Security Security
Unlikely 𝑡 < 𝑛 P/Poly Active Full Security

A constant-round protocol ∀ 2-party function in P/Poly with inverse-
polynomial average-case information-theoretic security in OT-hybrid model. 

A constant-round protocol ∀ 3-party function in P/Poly with inverse-
polynomial average-case information-theoretic security.

3 Decade old 
open problem!!

For 𝑛 = 2, existence of such an 
elementary reduction with 

partial fairness

Existence of an information theoretic elementary reduction from any 
function in P/Poly to a constant degree function in the CRS model with 
inverse-polynomial average-case privacy against passive adversaries.



Our Contributions (Positive Result)

Similar reduction is implicit in [BOSSV20].

If parties are allowed to interact twice with 𝑔, then we can achieve fairness. 

Can get full-security if 𝑔 is allowed to depend on the PRG.

Result Corruption Functions Security Security
Exists 𝑡 < 𝑛 P/Poly Active Identifiable Abort



Our Main Ideas
(Lower Bound)



Lower Bound (Talk Outline)

Why existing passively secure elementary reductions fail to achieve 
full-security against active adversaries

Why actively secure elementary reductions with full security are unlikely 
to exist for general efficiently computable functions

Warm-up

Main Theorem
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Why existing passively secure elementary reductions fail to achieve 
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Warm-up
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Existing Passively Secure Elementary Reductions

𝑔
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Sample random keys for 
each wire in the circuit 

representation of 𝑓

Evaluate the 
garbled circuit

Garbling function
(Constant-round)

What are the PRG calls used for?

Distributed Garbling

Send Keys
Send 

Garbled 
Circuit



Distributed Garbling
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𝑒 𝑓

Each garbled gate: Set of 4 randomly permuted ciphertexts 

Each ciphertext is a distributed encryption, where:

𝑘𝑒𝑦𝑠 = 𝑘!
%,' , 𝑘#

%,' , 𝑘$
%,' , 𝑘!

(,) , 𝑘#
(,) , 𝑘$

(,)

𝑚𝑠𝑔 = 𝑘!
*,+ , 𝑘#

*,+ , 𝑘$
*,+

for some 𝛼, 𝛽 ∈ 0,1 and 𝛾 = AND(𝛼, 𝛽)

Parties sample random keys for each wire in the circuit

Each gate in the circuit is individually garbled

For circuits with more than polylog depth,𝑘𝑒𝑦𝑠 must be shorter than 𝑚𝑠𝑔

Distributed encryption/decryption uses PRGs to expand 𝑘𝑒𝑦𝑠

Key-expansion using PRGs can be done by the parties locally 



Existing Passively Secure Elementary Reductions
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representation of 𝑓 and 
expands them using PRG

Evaluate the 
garbled circuit

Garbling function
implements distributed 

encryptions using 
expanded keys

Distributed Garbling

Send original 
and 

expanded 
keys

Send 
Garbled 
Circuit



Existing Passively Secure Elementary Reductions

𝑔

Pre1

Pre𝑛

Post1

Post𝑛

PRG
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Sample random keys for 
each wire in the circuit 
representation of 𝑓 and 
expands them using PRG

Evaluate the 
garbled circuit

Garbling function
implements distributed 

encryptions using 
expanded keys

Distributed Garbling

Send original 
and 

expanded 
keys

Send 
Garbled 
Circuit

Original keys act as “messages” in the distributed 
encryption and expanded keys act as “encryption 

keys” in the distributed encryption.



Problem with Active Adversaries

𝑔

Pre1

Pre𝑛
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Sample random keys for 
each wire in the circuit 
representation of 𝑓 and 
expands them using PRG

Evaluate the 
garbled circuit

Garbling function
implements distributed 

encryptions using 
expanded keys

Distributed Garbling

Send original 
and 

expanded 
keys

Send 
Garbled 
Circuit

• Corrupt parties may send inconsistent original 
and expanded key pairs.

• Honest parties will be unable to decrypt.
• But corrupt parties can decrypt if they know 

the "real" seed.
• Does not achieve full-security.
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Lower Bound (Talk Outline)

Why existing passively secure elementary reductions fail to achieve 
full-security against active adversaries

Why actively secure elementary reductions with full security are unlikely 
to exist for general efficiently computable functions

Warm-up

Main Theorem

For 𝑛 = 2, existence of such an 
elementary reduction with 

partial fairness

Existence of an information theoretic elementary reduction from any 
function in P/Poly to a constant degree function in the CRS model with 
inverse-polynomial average-case privacy against passive adversaries.

This restriction makes the 
theorem stronger

This restriction can be removed if parties 
only make random queries to the RO

Holds even if the parties have access to a Random Oracle (RO) !!



Proving the Main Theorem

𝑔

Pre1

Pre2

Post1

Post2

PRG



Proving the Main Theorem

𝑔

Pre1

Pre2

Post1

Post2

PRG

Assume FSOC, ∃ elementary reduction from every poly-sized 2-party function with partial fairness against active adversaries. 

Fairness only when Bob 
is corrupt



Proving the Main Theorem

𝑔

Pre1

Pre2

Post1

Post2

Random Oracle 𝐻

Assume FSOC, ∃ elementary reduction from every poly-sized 2-party function with partial fairness against active adversaries. 



Proving the Main Theorem

𝑔

Pre1

Pre2

Post1

Post2

Random Oracle 𝐻

Local Oracle 𝐺

Adversary samples and uses a local oracle 𝐺
instead of 𝐻 in the pre-processing phase

Assume FSOC, ∃ elementary reduction from every poly-sized 2-party function with partial fairness against active adversaries. 



Proving the Main Theorem

𝑔

Pre1

Pre2

Post1

Post2

Random Oracle 
G ∪ 𝐻

Assuming the parties don’t query the 
oracle on same inputs w.h.p, then this is 
equivalent to combining the two-oracles.

Assume FSOC, ∃ elementary reduction from every poly-sized 2-party function with partial fairness against active adversaries. 



Proving the Main Theorem

𝑔

Pre1

Pre2

Post1

Post2

Random Oracle 
G ∪ 𝐻

Since the Bob knows both G and H, it can 
compute the correct output.

Assume FSOC, ∃ elementary reduction from every poly-sized 2-party function with partial fairness against active adversaries. 

Can compute 
output



Proving the Main Theorem

𝑔

Pre1

Pre2

Post1

Post2

Random Oracle 
G ∪ 𝐻

Since the protocol is fair against Bob, if Bob 
can compute the output, so can Alice

Assume FSOC, ∃ elementary reduction from every poly-sized 2-party function with partial fairness against active adversaries. 

Can compute 
output

Can compute 
output

This modified protocol has correctness.



Proving the Main Theorem

𝑔

Pre1

Pre2

Post1

Post2

Random Oracle 
G ∪ 𝐻

Since the view of Alice remains unchanged, 
this protocol is still private against Alice.

Assume FSOC, ∃ elementary reduction from every poly-sized 2-party function with partial fairness against active adversaries. 

Can compute 
output

Can compute 
output

This modified protocol has privacy.



Proving the Main Theorem

𝑔

Pre1

Pre2

Post1

Random Oracle 
G ∪ 𝐻

A modified protocol for single output 
functionality 

Assume FSOC, ∃ elementary reduction from every poly-sized 2-party function with partial fairness against active adversaries. 



Proving the Main Theorem

𝑔

Pre1

Pre2

Post1

Local Oracle 𝐻

A modified protocol for single output 
functionality 

Assume FSOC, ∃ elementary reduction from every poly-sized 2-party function with partial fairness against active adversaries. 

Local Oracle 𝐺

Because post processing algorithm of 
Alice is independent of 𝐺



Proving the Main Theorem

𝑔

Pre1

Pre2

Post1

Local Oracle 𝐻

This is an information-theoretic passively-secure elementary reduction for single output functionalities.

Local Oracle 𝐺



Proving the Main Theorem

𝑔

Pre1

Pre2

Post1

Local Oracle 𝐻

Two-copies of the above reduction gives an information-theoretic elementary reduction for all two-input functionalities.

Local Oracle 𝐺



Our Lower Bound: Removing Simplifying Assumptions

Simplifying 
Assumption I

Simulation-based definition of fairness ⟹ If corrupt Bob gets the output so does Alice

How to 
Remove it

• Use authenticated functionalities that give Bob a MAC computed on his input, 
under a key chosen by Alice. 

• Fairness w.r.t. such functionalities implies the above simplified notion.

Simplifying 
Assumption II

Alice and Bob’s queries to the PRG do not intersect

How to 
Remove it

• Identify ‘’heavy queries’’ [BM09].
• Corrupt Bob only queries its local oracle on ``non-heavy’’ queries.
• Only allows us to get inverse-polynomial average-case security.
• Ensure correctness by adding a “detect-and-reveal” mechanism to functionality 𝑔.



Remarks about our Main Theorem

An information-theoretic solution cannot be ruled 
out.

Black-box use of a given primitive is useless for 
solving the problem

A non-black-box use of the primitive allows us to 
solve the problem

Our main 
theorem shows 
an example of a 
cryptographic 
problem for 

which



Remarks about our Main Theorem

An information-theoretic solution cannot be ruled 
out.

Black-box use of a given primitive is useless for 
solving the problem

A non-black-box use of the primitive allows us to 
solve the problem

[HOZ’13,MMP’14]: Random 
oracles are “useless” for 

secure 2-party computation 
of various functionalities.

[ABGIS’20]: Impossibility 
of elementary reductions 

to oblivious transfer

Our main 
theorem shows 
an example of a 
cryptographic 
problem for 

which

Existing examples only satisfy at 
most 2 of these



Our Main Ideas
(Positive Result)



Positive Results

Elementary reduction from every poly-sized 𝑛-input functionality, that achieves security 
with identifiable abort against any 𝑡 < 𝑛 active corruptions.

Define a notion of distributed encryption with identifiable abort and give a 
construction

This distributed encryption when used with the standard garbling protocol 
achieves security with identifiable abort



Distributed Encryption

KeyGen

KeyGen

KeyGen

Decryption

𝑑𝑘!

𝑑𝑘#

𝑑𝑘$

Encryption

𝑐𝑡

𝑚 or ⊥ & 
𝑏𝑎𝑑 set

𝑒𝑘!

𝑒𝑘#

𝑒𝑘$

𝑚



Distributed Encryption

Decryption

𝑑𝑘!

𝑑𝑘#

𝑑𝑘$

Encryption

𝑐𝑡

𝑚 or ⊥ & 
𝑏𝑎𝑑 set

𝑒𝑘!

𝑒𝑘#

𝑒𝑘$

Symmetric-key Encryption

Only KeyGen and Decryption are 
allowed to depend on a PRG.

Security if at least one key-pair is 
honestly generated

𝑚

KeyGen

KeyGen

KeyGen



Distributed Encryption

Decryption

𝑑𝑘!

𝑑𝑘#

𝑑𝑘$

Encryption

𝑐𝑡

𝑚 or ⊥ & 
𝑏𝑎𝑑 set

𝑒𝑘!

𝑒𝑘#

𝑒𝑘$

Security: Key-pairs are sufficient to 
simulate the outcome of Decryption

With identifiable abort: outcome is 
a valid message or ⊥ and 𝑏𝑎𝑑 set.

With abort: outcome is a valid 
message or ⊥.

𝑚

KeyGen

KeyGen

KeyGen



Distributed Encryption

Decryption

𝑑𝑘!

𝑑𝑘#

𝑑𝑘$

Encryption

𝑐𝑡

𝑚 or ⊥ & 
𝑏𝑎𝑑 set

𝑒𝑘!

𝑒𝑘#

𝑒𝑘$

Security: Key-pairs are sufficient to 
simulate the outcome of Decryption

With identifiable abort: outcome is 
a valid message or ⊥ and 𝑏𝑎𝑑 set.

With abort: outcome is a valid 
message or ⊥.

Cut-and-choose

𝑚

KeyGen

KeyGen

KeyGen



Distributed Encryption with Abort 
(MAC-then-encrypt)

Decryption

Compute 𝑚||𝑡𝑎𝑔 = (𝑐𝑡 ⨁,-!
. 𝑃𝑅𝐺(𝑑𝑘,))

If 𝑡𝑎𝑔 = 𝑀𝐴𝐶(𝑚𝑘,𝑚), output 𝑚, else 
output ⊥

𝑑𝑘!

𝑑𝑘#

𝑑𝑘$

Encryption

Sample MAC key 𝑚𝑘 and compute

𝑐𝑡 = 𝑚||𝑀𝐴𝐶 𝑚𝑘,𝑚 ⨁,-!
. 𝑒𝑘, , 𝑚𝑘

𝑐𝑡

𝑒𝑘!

𝑒𝑘#

𝑒𝑘$

KeyGen
Sample a random 𝑑𝑘 and compute 𝑒𝑘 = 𝑃𝑅𝐺(𝑑𝑘)

Simulating the Outcome of Decryption:      Output ⊥, if ⨁!"#
$ (𝑒𝑘! ⨁𝑃𝑅𝐺(𝑑𝑘!)) is a non-zero-string

𝑚

KeyGen

KeyGen

KeyGen



Distributed Encryption with Identifiable Abort
Decryption

• Check if the revealed 𝑒𝑘/𝑠 are 
consistent with the corresponding 
𝑑𝑘/𝑠 and identify any bad key-pairs.

• Decrypt the ciphertexts computed 
using remaining keys and take a 
majority of decrypted values.

𝑑𝑘!

𝑑𝑘#

𝑑𝑘$

Encryption

• Sample a random 0
#

subset of the 𝑒𝑘/𝑠
and output them.

• Use the remaining sets of 𝑒𝑘/𝑠 for 
encrypting 𝑚.

𝑐𝑡

𝑒𝑘!

𝑒𝑘#

𝑒𝑘$

KeyGen
Sample 𝑘 key pairs of DE with abort.

𝑚

Simulating the Outcome of Decryption: Sample a random %
&

subset of 𝑒𝑘'𝑠 and check if they are consistent with 
the corresponding 𝑑𝑘'𝑠 and identify any bad key-pairs.

KeyGen

KeyGen

KeyGen



Elementary Reduction with Identifiable Abort

𝑔

Pre1

Pre𝑛

Post1

Post𝑛

PRG

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Run key generation to 
sample 𝑒𝑘, 𝑑𝑘 pairs for 

each wire in the circuit 
representation of 𝑓 and 
expands them using PRG

Evaluate the 
garbled circuit by 

running decryption 
algorithms

Garbling function
implements encryption 
algorithm of distributed 
encryption scheme with 

identifiable abort

Distributed Garbling

Send
𝑒𝑘, 𝑑𝑘
pairs

Send 
Garbled 
Circuit



Conclusion

Elementary reduction for all efficiently computable functions that achieve full-security against any 
𝑡 < 𝑛 active corruptions is unlikely

Existence of elementary reduction for all efficiently computable functions that achieve identifiable 
abort against any 𝑡 < 𝑛 active corruptions.



Thank You

https://eprint.iacr.org/2021/1208


