
Stacking Sigma
A Framework to Compose Σ–Protocols for Disjunctions

Aarushi Goel Matthew Green Mathias Hall-Andersen Gabriel Kaptchuk

Zero Knowledge Proofs

𝐿 ∈ 𝑁𝑃

𝑥 ∈ 𝐿 Prove
it!

Okay, I
believe you

Prover Verifier

..

..

..

Zero Knowledge Proofs

𝐿 ∈ 𝑁𝑃

𝑥 ∈ 𝐿 Prove
it!

Okay, I
believe you

Prover Verifier

Cheating prover should not be
able to convince the verifier if

𝑥 ∉ 𝐿

Soundness

..

..

..

Zero Knowledge Proofs

𝐿 ∈ 𝑁𝑃

𝑥 ∈ 𝐿 Prove
it!

Okay, I
believe you

Prover Verifier

Cheating prover should not be
able to convince the verifier if

𝑥 ∉ 𝐿

Soundness

Verifier should not learn
anything other than the validity

of the statement

Zero knowledge

..

..

..

Sigma Protocols

𝐿 ∈ 𝑁𝑃

𝑎
𝑐
𝑧

Prover Verifier

Honest verifier zero-knowledge

Public coin proofs

Can be made non-interactive in the
random oracle model

Disjunctive Statements: Interesting Class of Languages

𝑥! ∈ 𝐿! 𝑥" ∈ 𝐿" 𝑥# ∈ 𝐿#𝑜𝑟 𝑜𝑟 𝑜𝑟…..

Where each 𝐿$ ∈ 𝑁𝑃

Disjunctive Statements: Interesting Class of Languages

𝑥! ∈ 𝐿! 𝑥" ∈ 𝐿" 𝑥# ∈ 𝐿#𝑜𝑟 𝑜𝑟 𝑜𝑟…..

Applications:

Set-Membership Proofs – Ring signatures, confidential transactions

Where each 𝐿$ ∈ 𝑁𝑃

Disjunctive Statements: Interesting Class of Languages

𝑥! ∈ 𝐿! 𝑥" ∈ 𝐿" 𝑥# ∈ 𝐿#𝑜𝑟 𝑜𝑟 𝑜𝑟…..

Applications:

Set-Membership Proofs – Ring signatures, confidential transactions

Proving existence of bugs in codebase

Where each 𝐿$ ∈ 𝑁𝑃

Disjunctive Statements: Interesting Class of Languages

𝑥! ∈ 𝐿! 𝑥" ∈ 𝐿" 𝑥# ∈ 𝐿#𝑜𝑟 𝑜𝑟 𝑜𝑟…..

Applications:

Set-Membership Proofs – Ring signatures, confidential transactions

Proving existence of bugs in codebase

Proving correct execution of a processor

…….

Where each 𝐿$ ∈ 𝑁𝑃

Zero-Knowledge Proofs for Disjunctive Statements
Result General Compiler Languages Proof Size Prover Time Non-interactive

Classical
[CDS94, AOS02]

For Σ-Protocols All Linear in all the
branches

Linear in all the
branches

Random Oracle
Model

Stacked Garbling [HK20] NO Circuit SAT Linear in one branch Linear in all the
branches

NO

Mac n’ Cheese
[BMRS20]

For special kind of
interactive proofs

Circuit SAT Linear in one branch Linear in all the branch NO

Bullet-Proofs/Compressed-
Protocols

[BCC+16,BBB+18, ACF20..]

NO Restricted Class Sublinear Linear in all the branch Random Oracle
Model

SNARKs All Sublinear Super-linear in all the
branches

CRS/Random
Oracle Model

Zero-Knowledge Proofs for Disjunctive Statements
Result General Compiler Languages Proof Size Prover Time Non-interactive

Classical
[CDS94, AOS02]

For Σ-Protocols All Linear in all the
branches

Linear in all the
branches

Random Oracle
Model

Stacked Garbling [HK20] NO Circuit SAT Linear in one branch Linear in all the
branches

NO

Mac n’ Cheese
[BMRS20]

For special kind of
interactive proofs

Circuit SAT Linear in one branch Linear in all the branch NO

Bullet-Proofs/Compressed-
Protocols

[BCC+16,BBB+18, ACF20..]

NO Restricted Class Sublinear Linear in all the branch Random Oracle
Model

SNARKs All Sublinear Super-linear in all the
branches

CRS/Random
Oracle Model

Zero-Knowledge Proofs for Disjunctive Statements
Result General Compiler Languages Proof Size Prover Time Non-interactive

Classical
[CDS94, AOS02]

For Σ-Protocols All Linear in all the
branches

Linear in all the
branches

Random Oracle
Model

Stacked Garbling [HK20] NO Circuit SAT Linear in one branch Linear in all the
branches

NO

Mac n’ Cheese
[BMRS20]

For special kind of
interactive proofs

Circuit SAT Linear in one branch Linear in all the branch NO

Bullet-Proofs/Compressed-
Protocols

[BCC+16,BBB+18, ACF20..]

NO Restricted Class Sublinear Linear in all the branch Random Oracle
Model

SNARKs All Sublinear Super-linear in all the
branches

CRS/Random
Oracle Model

Zero-Knowledge Proofs for Disjunctive Statements
Result General Compiler Languages Proof Size Prover Time Non-interactive

Classical
[CDS94, AOS02]

For Σ-Protocols All Linear in all the
branches

Linear in all the
branches

Random Oracle
Model

Stacked Garbling [HK20] NO Circuit SAT Linear in one branch Linear in all the
branches

NO

Mac n’ Cheese
[BMRS20]

For special kind of
interactive proofs

Circuit SAT Linear in one branch Linear in all the branch NO

Bullet-Proofs/Compressed-
Protocols

[BCC+16,BBB+18, ACF20..]

NO Restricted Class Sublinear Linear in all the branch Random Oracle
Model

SNARKs All Sublinear Super-linear in all the
branches

CRS/Random
Oracle Model

Zero-Knowledge Proofs for Disjunctive Statements
Result General Compiler Languages Proof Size Prover Time Non-interactive

Classical
[CDS94, AOS02]

For Σ-Protocols All Linear in all the
branches

Linear in all the
branches

Random Oracle
Model

Stacked Garbling [HK20] NO Circuit SAT Linear in one branch Linear in all the
branches

NO

Mac n’ Cheese
[BMRS20]

For special kind of
interactive proofs

Circuit SAT Linear in one branch Linear in all the branch NO

Bullet-Proofs/Compressed-
Protocols

[BCC+16,BBB+18, ACF20..]

NO Restricted Class Sublinear Linear in all the branch Random Oracle
Model

SNARKs All Sublinear Super-linear in all the
branches

CRS/Random
Oracle Model

Zero-Knowledge Proofs for Disjunctive Statements
Result General Compiler Languages Proof Size Prover Time Non-interactive

Classical
[CDS94, AOS02]

For Σ-Protocols All Linear in all the
branches

Linear in all the
branches

Random Oracle
Model

Stacked Garbling [HK20] NO Circuit SAT Linear in one branch Linear in all the
branches

NO

Mac n’ Cheese
[BMRS20]

For special kind of
interactive proofs

Circuit SAT Linear in one branch Linear in all the branch NO

Bullet-Proofs/Compressed-
Protocols

[BCC+16,BBB+18, ACF20..]

NO Restricted Class Sublinear Linear in all the branch Random Oracle
Model

SNARKs All Sublinear Super-linear in all the
branches

CRS/Random
Oracle Model

Zero-Knowledge Proofs for Disjunctive Statements
Result General Compiler Languages Proof Size Prover Time Non-interactive

Classical
[CDS94, AOS02]

For Σ-Protocols All Linear in all the
branches

Linear in all the
branches

Random Oracle
Model

Stacked Garbling [HK20] NO Circuit SAT Linear in one branch Linear in all the
branches

NO

Mac n’ Cheese
[BMRS20]

For special kind of
interactive proofs

Circuit SAT Linear in one branch Linear in all the branch NO

Bullet-Proofs/Compressed-
Protocols

[BCC+16,BBB+18, ACF20..]

NO Restricted Class Sublinear Linear in all the branch Random Oracle
Model

SNARKs All Sublinear Super-linear in all the
branches

CRS/Random
Oracle Model

Our Work For Σ-Protocols All Linear in one branch Linear in all the
branches

Random Oracle
Model

Stacking Σ-Protocols for Disjunctions

Prover Verifier

𝑥! ∈ 𝐿! 𝑥" ∈ 𝐿" 𝑥# ∈ 𝐿#𝑜𝑟 𝑜𝑟 𝑜𝑟…..

Stacking Σ-Protocols for Disjunctions

𝑧!

𝑐!

Prover Verifier

𝑎!

𝑥! ∈ 𝐿! 𝑥" ∈ 𝐿" 𝑥# ∈ 𝐿#𝑜𝑟 𝑜𝑟 𝑜𝑟…..

Σ!

Stacking Σ-Protocols for Disjunctions

𝑧!

𝑎"

𝑐!

𝑧"
Prover Verifier

𝑎!

𝑥! ∈ 𝐿! 𝑥" ∈ 𝐿" 𝑥# ∈ 𝐿#𝑜𝑟 𝑜𝑟 𝑜𝑟…..

Σ!

𝑐"

Σ"

Stacking Σ-Protocols for Disjunctions

𝑧!

𝑎"

𝑐!

𝑧" 𝑧#

…..

Prover Verifier
…..

𝑎! 𝑎#

𝑥! ∈ 𝐿! 𝑥" ∈ 𝐿" 𝑥# ∈ 𝐿#𝑜𝑟 𝑜𝑟 𝑜𝑟…..

Σ!

𝑐" 𝑐#

Σ" Σ#

…..

Stacking Σ-Protocols for Disjunctions

𝑧!

𝑎"

𝑐!

𝑧" 𝑧#

…..

Prover Verifier
…..

𝑎! 𝑎#

𝑥! ∈ 𝐿! 𝑥" ∈ 𝐿" 𝑥# ∈ 𝐿#𝑜𝑟 𝑜𝑟 𝑜𝑟…..

Σ!

𝑐" 𝑐#

Σ" Σ#

…..

Can we generically compose these
Σ-Protocols for disjunctions?

Stacking Σ-Protocols for Disjunctions

𝑧!

𝑎"

𝑐!

𝑧" 𝑧#

…..

Prover Verifier
…..

𝑎! 𝑎#

𝑥! ∈ 𝐿! 𝑥" ∈ 𝐿" 𝑥# ∈ 𝐿#𝑜𝑟 𝑜𝑟 𝑜𝑟…..

Σ!

𝑐" 𝑐#

Σ" Σ#

…..

Can we generically compose these
Σ-Protocols for disjunctions?

Without modifying the underlying
Σ-Protocols

Stacking Σ-Protocols for Disjunctions

𝑧!

𝑎"

𝑐!

𝑧" 𝑧#

…..

Prover Verifier
…..

𝑎! 𝑎#

𝑥! ∈ 𝐿! 𝑥" ∈ 𝐿" 𝑥# ∈ 𝐿#𝑜𝑟 𝑜𝑟 𝑜𝑟…..

Σ!

𝑐" 𝑐#

Σ" Σ#

…..

Can we generically compose these
Σ-Protocols for disjunctions?

Without modifying the underlying
Σ-Protocols

Communication is that same as
that of proving a single branch

Applications of such Stacking Compilers

Reduces manual effort of modifying existing techniques

Applications of such Stacking Compilers

Reduces manual effort of modifying existing techniques

Newly developed Σ-protocols can also be used to produce stacked proofs immediately

Applications of such Stacking Compilers

Reduces manual effort of modifying existing techniques

Newly developed Σ-protocols can also be used to produce stacked proofs immediately

Empowering protocol designers to choose appropriate Σ-protocols based on their application

Stacking Σ-Protocols for Disjunctions

𝑧!

𝑎"

𝑐!

𝑧" 𝑧#

…..

Prover Verifier
…..

𝑎! 𝑎#

𝑐" 𝑐#

𝑥! ∈ 𝐿 𝑥" ∈ 𝐿 𝑥# ∈ 𝐿𝑜𝑟 𝑜𝑟 𝑜𝑟…..

Σ Σ Σ

…..

Stacking Σ-Protocols for Disjunctions

𝑧!

𝑎"

𝑐!

𝑧" 𝑧#

…..

Prover Verifier
…..

𝑎! 𝑎#

𝑐" 𝑐#

𝑥! ∈ 𝐿 𝑥" ∈ 𝐿 𝑥# ∈ 𝐿𝑜𝑟 𝑜𝑟 𝑜𝑟…..

Σ Σ Σ

…..

Stacking Σ-Protocols for Disjunctions

𝑧!

𝑎"

𝑐

𝑧" 𝑧#

…..

Prover Verifier
…..

𝑎! 𝑎#

𝑥! ∈ 𝐿 𝑥" ∈ 𝐿 𝑥# ∈ 𝐿𝑜𝑟 𝑜𝑟 𝑜𝑟…..

Stacking Σ-Protocols for Disjunctions

𝑧!

𝑎"

𝑐

𝑧" 𝑧#

…..

Prover Verifier
…..

𝑎! 𝑎#

𝑥! ∈ 𝐿 𝑥" ∈ 𝐿 𝑥# ∈ 𝐿𝑜𝑟 𝑜𝑟 𝑜𝑟…..

Prover
has 𝑤!

Stacking Σ-Protocols for Disjunctions

𝑧!

𝑎"

𝑐

𝑧" 𝑧#

…..

Prover Verifier
…..

𝑎! 𝑎#

𝑥! ∈ 𝐿 𝑥" ∈ 𝐿 𝑥# ∈ 𝐿𝑜𝑟 𝑜𝑟 𝑜𝑟…..

Prover
has 𝑤!

Prover can
compute these

messages

Stacking Σ-Protocols for Disjunctions

𝑧!

𝑎"

𝑐

𝑧" 𝑧#

…..

Prover Verifier
…..

𝑎! 𝑎#

𝑥! ∈ 𝐿 𝑥" ∈ 𝐿 𝑥# ∈ 𝐿𝑜𝑟 𝑜𝑟 𝑜𝑟…..

Prover
has 𝑤!

????

Stacking Σ-Protocols for Disjunctions

𝑧!

𝑎"

𝑐

𝑧" 𝑧#

…..

Prover Verifier
…..

𝑎! 𝑎#

𝑥! ∈ 𝐿 𝑥" ∈ 𝐿 𝑥# ∈ 𝐿𝑜𝑟 𝑜𝑟 𝑜𝑟…..

Prover
has 𝑤!

Cheat?Cheat?

Stacking Σ-Protocols for Disjunctions

𝑧!

𝑎"

𝑐

𝑧" 𝑧#

…..

Prover Verifier
…..

𝑎! 𝑎#

𝑥! ∈ 𝐿 𝑥" ∈ 𝐿 𝑥# ∈ 𝐿𝑜𝑟 𝑜𝑟 𝑜𝑟…..

Prover
has 𝑤!

SimulateSimulate

Stacking Σ-Protocols for Disjunctions

𝑧!

𝑎"

𝑐

𝑧" 𝑧#

…..

Prover Verifier
…..

𝑎! 𝑎#

𝑥! ∈ 𝐿 𝑥" ∈ 𝐿 𝑥# ∈ 𝐿𝑜𝑟 𝑜𝑟 𝑜𝑟…..
Common simulation

strategy in Σ-protocols:

Sample 𝑐

Compute 𝑎, 𝑧

Step 1:

Step 2:Prover
has 𝑤!

SimulateSimulate

Stacking Σ-Protocols for Disjunctions

𝑧!

𝑎"

𝑐

𝑧" 𝑧#

…..

Prover Verifier
…..

𝑎! 𝑎#

𝑥! ∈ 𝐿 𝑥" ∈ 𝐿 𝑥# ∈ 𝐿𝑜𝑟 𝑜𝑟 𝑜𝑟…..
Common simulation

strategy in Σ-protocols:

Sample 𝑐

Compute 𝑎, 𝑧

Step 1:

Step 2:Prover
has 𝑤!

SimulateSimulate

How to
simulate these

messages?

Stacking Σ-Protocols for Disjunctions

𝑎" …..

Prover Verifier

garbage garbage

𝑥! ∈ 𝐿 𝑥" ∈ 𝐿 𝑥# ∈ 𝐿𝑜𝑟 𝑜𝑟 𝑜𝑟…..
Common simulation

strategy in Σ-protocols:

Sample 𝑐

Compute 𝑎, 𝑧

Step 1:

Step 2:Prover
has 𝑤!

𝐶𝑜𝑚()

Stacking Σ-Protocols for Disjunctions

𝑎"

𝑐

…..

Prover Verifier

garbage garbage

𝑥! ∈ 𝐿 𝑥" ∈ 𝐿 𝑥# ∈ 𝐿𝑜𝑟 𝑜𝑟 𝑜𝑟…..
Common simulation

strategy in Σ-protocols:

Sample 𝑐

Compute 𝑎, 𝑧

Step 1:

Step 2:Prover
has 𝑤!

𝐶𝑜𝑚()

Stacking Σ-Protocols for Disjunctions

𝑎"

𝑐

…..

Prover Verifier

garbage garbage

𝑥! ∈ 𝐿 𝑥" ∈ 𝐿 𝑥# ∈ 𝐿𝑜𝑟 𝑜𝑟 𝑜𝑟…..
Common simulation

strategy in Σ-protocols:

Sample 𝑐

Compute 𝑎, 𝑧

Step 1:

Step 2:Prover
has 𝑤!

𝐶𝑜𝑚()

Simulate (𝑎!, 𝑧!), 𝑎%, 𝑧% … , (𝑎#, 𝑧#)

𝑜𝑝 = Equivocate 𝑐𝑜𝑚 to [𝑎!, 𝑎", … , 𝑎#]

Stacking Σ-Protocols for Disjunctions

𝑧!

𝑎"

𝑐

𝑧" 𝑧#

…..

Prover Verifier
…..

garbage garbage

𝑥! ∈ 𝐿 𝑥" ∈ 𝐿 𝑥# ∈ 𝐿𝑜𝑟 𝑜𝑟 𝑜𝑟…..
Common simulation

strategy in Σ-protocols:

Sample 𝑐

Compute 𝑎, 𝑧

Step 1:

Step 2:Prover
has 𝑤!

𝐶𝑜𝑚()

, 𝑜𝑝

Simulate (𝑎!, 𝑧!), 𝑎%, 𝑧% … , (𝑎#, 𝑧#)

𝑜𝑝 = Equivocate 𝑐𝑜𝑚 to [𝑎!, 𝑎", … , 𝑎#]

Stacking Σ-Protocols for Disjunctions

𝑧!

𝑎"

𝑐

𝑧" 𝑧#

…..

Prover Verifier
…..

garbage garbage

𝑥! ∈ 𝐿 𝑥" ∈ 𝐿 𝑥# ∈ 𝐿𝑜𝑟 𝑜𝑟 𝑜𝑟…..
Common simulation

strategy in Σ-protocols:

Sample 𝑐

Compute 𝑎, 𝑧

Step 1:

Step 2:Prover
has 𝑤!

𝐶𝑜𝑚()

, 𝑜𝑝

Properties of these commitment schemes?

Partially Binding Vector Commitments

𝑡-out-of-𝑛 positions are binding. Rest can be equivocated.

Binding positions are fixed at the time of commitment.

Binding positions remain hidden from the receiver.

We propose a construction using Discrete Log

Stacking Σ-Protocol for Disjunctions

𝑧! 𝑧" 𝑧#

Prover Verifier

…..

𝑥! ∈ 𝐿 𝑥" ∈ 𝐿 𝑥# ∈ 𝐿𝑜𝑟 𝑜𝑟 𝑜𝑟…..Prover
has 𝑤!

, 𝑜𝑝

This is a valid Σ-protocol for disjunctions. But we haven’t really saved any communication?

Simulate (𝑎!, 𝑧!), 𝑎%, 𝑧% … , (𝑎#, 𝑧#) using 𝑐

𝑜𝑝 = Equivocate 𝑐𝑜𝑚 to [𝑎!, 𝑎", … , 𝑎#]

Compute 𝑧" honestly

𝑎"

𝑐

…..garbage garbage𝐶𝑜𝑚()

Bulkiest Part of a Σ-Protocol

𝑎
𝑐
𝑧

Prover Verifier

Bulkiest Part of a Σ-Protocol

𝐻𝑎𝑠ℎ(𝑎)
𝑐

𝑧, 𝑜𝑝𝑒𝑛

Prover Verifier

W.l.o.g., Third round messages are the longest!

Stacking Σ-Protocol for Disjunctions

𝑧! 𝑧" 𝑧#

Prover Verifier

…..

𝑥! ∈ 𝐿 𝑥" ∈ 𝐿 𝑥# ∈ 𝐿𝑜𝑟 𝑜𝑟 𝑜𝑟…..Prover
has 𝑤!

, 𝑜𝑝

Can we re-use the third-round message of the active branch?

𝑎"

𝑐

…..garbage garbage𝐶𝑜𝑚()

Simulate (𝑎!, 𝑧!), 𝑎%, 𝑧% … , (𝑎#, 𝑧#) using 𝑐

𝑜𝑝 = Equivocate 𝑐𝑜𝑚 to [𝑎!, 𝑎", … , 𝑎#]

Compute 𝑧" honestly

Stacking Σ-Protocol for Disjunctions

𝑎"

𝑐

𝑧"

…..

Prover Verifier

garbage garbage

𝑥! ∈ 𝐿 𝑥" ∈ 𝐿 𝑥# ∈ 𝐿𝑜𝑟 𝑜𝑟 𝑜𝑟…..Prover
has 𝑤!

𝐶𝑜𝑚()

, 𝑜𝑝

Simulate (𝑎!, 𝑧!), 𝑎%, 𝑧% … , (𝑎#, 𝑧#) using 𝑐, 𝑧"

𝑜𝑝 = Equivocate 𝑐𝑜𝑚 to [𝑎!, 𝑎", … , 𝑎#]

Compute 𝑧" honestly

Stacking Σ-Protocol for Disjunctions

𝑎"

𝑐

𝑧"

…..

Prover Verifier

garbage garbage

𝑥! ∈ 𝐿 𝑥" ∈ 𝐿 𝑥# ∈ 𝐿𝑜𝑟 𝑜𝑟 𝑜𝑟…..Prover
has 𝑤!

𝐶𝑜𝑚()

, 𝑜𝑝

Simulate (𝑎!, 𝑧!), 𝑎%, 𝑧% … , (𝑎#, 𝑧#) using 𝑐, 𝑧"

𝑜𝑝 = Equivocate 𝑐𝑜𝑚 to [𝑎!, 𝑎", … , 𝑎#]

Compute 𝑧" honestly
Doesn’t work generically. The
underlying Σ-Protocols, must

satisfy some properties

Stackable Properties
Property 1: Extended Honest Verifier Zero-knowledge

Stackable Properties
Property 1: Extended Honest Verifier Zero-knowledge

Simulation: For any instance 𝑥 and challenge 𝑐, first compute a third-round message, then simulate
the corresponding first round message.

Stackable Properties
Property 1: Extended Honest Verifier Zero-knowledge

Simulation: For any instance 𝑥 and challenge 𝑐, first compute a third-round message, then simulate
the corresponding first round message.

Stackable Properties
Property 1: Extended Honest Verifier Zero-knowledge

Simulation: For any instance 𝑥 and challenge 𝑐, first compute a third-round message, then simulate
the corresponding first round message.

Property 2: Recyclable Third Round Messages

Stackable Properties
Property 1: Extended Honest Verifier Zero-knowledge

Simulation: For any instance 𝑥 and challenge 𝑐, first compute a third-round message, then simulate
the corresponding first round message.

Property 2: Recyclable Third Round Messages

Given a fixed challenge, the distribution of possible third round messages for any pair of statements
in the language are indistinguishable from each other.

Stackable Properties
Property 1: Extended Honest Verifier Zero-knowledge

Simulation: For any instance 𝑥 and challenge 𝑐, first compute a third-round message, then simulate
the corresponding first round message.

Property 2: Recyclable Third Round Messages

Given a fixed challenge, the distribution of possible third round messages for any pair of statements
in the language are indistinguishable from each other.

Stackable Properties
Property 1: Extended Honest Verifier Zero-knowledge

Property 2: Recyclable Third Round Messages

+

=

Stacked Σ-Protocol for Disjunctions

𝑎"

𝑐

𝑧"

…..

Prover Verifier

garbage garbage

𝑥! ∈ 𝐿 𝑥" ∈ 𝐿 𝑥# ∈ 𝐿𝑜𝑟 𝑜𝑟 𝑜𝑟…..Prover
has 𝑤!

𝐶𝑜𝑚()

, 𝑟′

Communication = proof size for proving a single branch + size of commitment + size of opening

Can be
short

At least linear in the
length of the vector

Recursive Stacking

𝑥! ∈ 𝐿 𝑥" ∈ 𝐿 𝑥# ∈ 𝐿𝑜𝑟 𝑜𝑟 𝑜𝑟…..

Communication = | Σ | + Commitment + 1Σ" = Stack Σ and Σ1 out of 2 disjunction

Recursive Stacking

𝑥! ∈ 𝐿 𝑥" ∈ 𝐿 𝑥# ∈ 𝐿𝑜𝑟 𝑜𝑟 𝑜𝑟…..

Communication = | Σ | + Commitment + 1Σ" = Stack Σ and Σ1 out of 2 disjunction

Communication = | Σ | + 2 × Commitment + 1 + 1Σ& = Stack Σ" and Σ"1 out of 4 disjunction

Recursive Stacking

𝑥! ∈ 𝐿 𝑥" ∈ 𝐿 𝑥# ∈ 𝐿𝑜𝑟 𝑜𝑟 𝑜𝑟…..

Communication = | Σ | + Commitment + 1Σ" = Stack Σ and Σ1 out of 2 disjunction

Communication = | Σ | + 2 × Commitment + 1 + 1Σ& = Stack Σ" and Σ"1 out of 4 disjunction

Communication = | Σ | + 3 × Commitment + 1 +1 + 1Σ' = Stack Σ& and Σ&1 out of 8 disjunction

Recursive Stacking

𝑥! ∈ 𝐿 𝑥" ∈ 𝐿 𝑥# ∈ 𝐿𝑜𝑟 𝑜𝑟 𝑜𝑟…..

Communication = | Σ | + Commitment + 1Σ" = Stack Σ and Σ1 out of 2 disjunction

Communication = | Σ | + 2 × Commitment + 1 + 1Σ& = Stack Σ" and Σ"1 out of 4 disjunction

Communication = | Σ | + 3 × Commitment + 1 +1 + 1Σ' = Stack Σ& and Σ&1 out of 8 disjunction

Communication = | Σ | + log(n) × Commitment + log(n)Σ# = Stack Σ#/" and Σ#/"1 out of n disjunction

…..

Examples of Stackable Σ-Protocols
Many natural sigma protocols are stackable

Examples of Stackable Σ-Protocols
Many natural sigma protocols are stackable

Example 1: Schnorr’s Σ-Protocol 𝑅 𝑥,𝑤 : 𝑥 =?= 𝑔*

Examples of Stackable Σ-Protocols
Many natural sigma protocols are stackable

Example 1: Schnorr’s Σ-Protocol 𝑅 𝑥,𝑤 : 𝑥 =?= 𝑔*

Prover Verifier

𝑎 = 𝑔+

𝑐

z = 𝑐𝑤 + 𝑟

Examples of Stackable Σ-Protocols
Many natural sigma protocols are stackable

Example 1: Schnorr’s Σ-Protocol 𝑅 𝑥,𝑤 : 𝑥 =?= 𝑔*

Prover Verifier

𝑎 = 𝑔+

𝑐

z = 𝑐𝑤 + 𝑟

Simulation Strategy: Sample random 𝑧. Compute 𝑎 = 𝑔!𝑥"#

Independent
of instance

Examples of Stackable Σ-Protocols
Many natural sigma protocols are stackable

Example 1: Schnorr’s Σ-Protocol

Example 2: Graph 3-coloring Is a graph 𝐺 = 𝑉, 𝐸 , 3-colorable?

Examples of Stackable Σ-Protocols
Many natural sigma protocols are stackable

Example 1: Schnorr’s Σ-Protocol

Example 2: Graph 3-coloring Is a graph 𝐺 = 𝑉, 𝐸 , 3-colorable?

Prover Verifier

𝑎 = commitment of permuted 3-coloring

𝑐 = random edge in graph

z =open colors of the edge

Examples of Stackable Σ-Protocols
Many natural sigma protocols are stackable

Example 1: Schnorr’s Σ-Protocol

Example 2: Graph 3-coloring Is a graph 𝐺 = 𝑉, 𝐸 , 3-colorable?

Prover Verifier

𝑎 = commitment of permuted 3-coloring

𝑐 = random edge in graph

z =open colors of the edge

Independent
of instance

Examples of Stackable Σ-Protocols
Many natural sigma protocols are stackable

Example 1: Schnorr’s Σ-Protocol

Example 2: Graph 3-coloring

Example 2: MPC-in-the-head [IKOS]

[IKOS07] is Stackable?

Prover Verifier

Run MPC in the head, commit to views of all parties

For function 𝑅(𝑥, .), that
takes 𝑤 as input

[IKOS07] is Stackable?

Prover Verifier

Run MPC in the head, commit to views of all parties

Choose a random subset of parties

For function 𝑅(𝑥, .), that
takes 𝑤 as input

[IKOS07] is Stackable?

Prover Verifier

Run MPC in the head, commit to views of all parties

Choose a random subset of parties

Open views of the chosen parties

For function 𝑅(𝑥, .), that
takes 𝑤 as input

[IKOS07] is Stackable?

Prover Verifier

Run MPC in the head, commit to views of all parties

Choose a random subset of parties

Open views of the chosen parties

Simulator

Choose a random subset of parties

For function 𝑅(𝑥, .), that
takes 𝑤 as input

[IKOS07] is Stackable?

Prover Verifier

Run MPC in the head, commit to views of all parties

Choose a random subset of parties

Open views of the chosen parties

Simulator

Choose a random subset of parties

Simulate the views of these parties' using
simulator of the underlying MPC protocol

For function 𝑅(𝑥, .), that
takes 𝑤 as input

[IKOS07] is Stackable?

Prover Verifier

Run MPC in the head, commit to views of all parties

Choose a random subset of parties

Open views of the chosen parties

Simulator

Choose a random subset of parties

Simulate the views of these parties' using
simulator of the underlying MPC protocol

Honestly commit to these views and
garbage for the remaining parties’ views

For function 𝑅(𝑥, .), that
takes 𝑤 as input

[IKOS07] is Stackable?

Prover Verifier

Run MPC in the head, commit to views of all parties

Choose a random subset of parties

Open views of the chosen parties

Simulator

Choose a random subset of parties

Simulate the views of these parties' using
simulator of the underlying MPC protocol

Honestly commit to these views and
garbage for the remaining parties’ views

It is naturally EHVZK. What about recyclable third round messages?

For function 𝑅(𝑥, .), that
takes 𝑤 as input

𝐹-Universally Simulatable MPC

𝐹-Universally Simulatable MPC
Adversary’s view in many MPC protocols can be condensed and decoupled from the

structure of the functionality being evaluated

𝐹-Universally Simulatable MPC
Adversary’s view in many MPC protocols can be condensed and decoupled from the

structure of the functionality being evaluated

Example: Many secret sharing-based MPC (e.g. [BGW88])

𝐹-Universally Simulatable MPC
Adversary’s view in many MPC protocols can be condensed and decoupled from the

structure of the functionality being evaluated

Example: Many secret sharing-based MPC (e.g. [BGW88])

Simulator simulates random shares for the
adversary for each of these gates

𝐹-Universally Simulatable MPC
Adversary’s view in many MPC protocols can be condensed and decoupled from the

structure of the functionality being evaluated

Example: Many secret sharing-based MPC (e.g. [BGW88])

Simulator simulates random shares for the
adversary for each of these gates

Given previously simulated shares and the
output, simulate the final message

𝐹-Universally Simulatable MPC
Adversary’s view in many MPC protocols can be condensed and decoupled from the

structure of the functionality being evaluated

Example: Many secret sharing-based MPC (e.g. [BGW88])

Simulator simulates random shares for the
adversary for each of these gates

Given previously simulated shares and the
output, simulate the final message

Independent of the function/circuit!

Deterministic computation

𝐹-Universally Simulatable MPC
Adversary’s view in many MPC protocols can be condensed and decoupled from the

structure of the functionality being evaluated

Example: Many secret sharing-based MPC (e.g. [BGW88])

Simulator simulates random shares for the
adversary for each of these gates

Given previously simulated shares and the
output, simulate the final message

Independent of the function/circuit!

Deterministic computation

Condensed Views

Expanded Views

Modified [IKOS07] for 𝐹-Universally Simulatable MPC

Prover Verifier

Run MPC in the head, commit to views of all parties

Choose a random subset of parties

Condensed views of the chosen parties and
randomness used in corresponding commitments

For function 𝑅(𝑥, .), that
takes 𝑤 as input

Prover Verifier

Run MPC in the head, commit to views of all parties

Choose a random subset of parties

Condensed views of the chosen parties and
randomness used in corresponding commitments

Verifier can expand condensed views
assuming output is 1, check if commitments
are valid and perform all other consistency

checks

For function 𝑅(𝑥, .), that
takes 𝑤 as input

Modified [IKOS07] for 𝐹-Universally Simulatable MPC

Prover Verifier

Run MPC in the head, commit to views of all parties

Choose a random subset of parties

Condensed views of the chosen parties and
randomness used in corresponding commitments

Verifier can expand condensed views
assuming output is 1, check if commitments
are valid and perform all other consistency

checks

Since condensed views are independent of
the functionality, this protocol now has

recyclable third-round message

For function 𝑅(𝑥, .), that
takes 𝑤 as input

Modified [IKOS07] for 𝐹-Universally Simulatable MPC

Disjunctions with Different Languages

𝑥! ∈ 𝐿! 𝑥" ∈ 𝐿" 𝑥# ∈ 𝐿#𝑜𝑟 𝑜𝑟 𝑜𝑟…..

Disjunctions with Different Languages

𝑥! ∈ 𝐿! 𝑥" ∈ 𝐿" 𝑥# ∈ 𝐿#𝑜𝑟 𝑜𝑟 𝑜𝑟…..
Σ! Σ" Σ#

Disjunctions with Different Languages

𝑥! ∈ 𝐿! 𝑥" ∈ 𝐿" 𝑥# ∈ 𝐿#𝑜𝑟 𝑜𝑟 𝑜𝑟…..

Sometimes same protocol works for different languages

Σ! Σ" Σ#

Disjunctions with Different Languages

𝑥! ∈ 𝐿! 𝑥" ∈ 𝐿" 𝑥# ∈ 𝐿#𝑜𝑟 𝑜𝑟 𝑜𝑟…..

Sometimes same protocol works for different languages

Σ! Σ" Σ#

If third round messages are over different fields/rings – represent
as bits and see what parts can be re-used

Thank You!

