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it!
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Soundness
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Sigma Protocols

𝐿 ∈ 𝑁𝑃

𝑎
𝑐
𝑧

Prover Verifier

Honest verifier zero-knowledge

Public coin proofs

Can be made non-interactive in the 
random oracle model
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𝑥! ∈ 𝐿! 𝑥" ∈ 𝐿" 𝑥# ∈ 𝐿#𝑜𝑟 𝑜𝑟 𝑜𝑟…..

Applications:

Set-Membership Proofs – Ring signatures, confidential transactions

Proving existence of bugs in codebase

Proving correct execution of a processor

…….

Where each 𝐿$ ∈ 𝑁𝑃
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Communication is that same as 
that of proving a single branch
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Applications of such Stacking Compilers

Reduces manual effort of modifying existing techniques

Newly developed Σ-protocols can also be used to produce stacked proofs immediately

Empowering protocol designers to choose appropriate Σ-protocols based on their application  
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Partially Binding Vector Commitments

𝑡-out-of-𝑛 positions are binding. Rest can be equivocated.

Binding positions are fixed at the time of commitment. 

Binding positions remain hidden from the receiver.

We propose a construction using Discrete Log
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𝑜𝑝 = Equivocate 𝑐𝑜𝑚 to [𝑎!, 𝑎", … , 𝑎#]

Compute 𝑧" honestly

𝑎"

𝑐

…..garbage garbage𝐶𝑜𝑚( )
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Bulkiest Part of a Σ-Protocol

𝐻𝑎𝑠ℎ(𝑎)
𝑐

𝑧, 𝑜𝑝𝑒𝑛

Prover Verifier

W.l.o.g., Third round messages are the longest!
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𝑐
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garbage garbage
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has 𝑤!
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, 𝑜𝑝

Simulate (𝑎!, 𝑧!), 𝑎%, 𝑧% … , (𝑎#, 𝑧#) using 𝑐, 𝑧"

𝑜𝑝 = Equivocate 𝑐𝑜𝑚 to [𝑎!, 𝑎", … , 𝑎#]

Compute 𝑧" honestly
Doesn’t work generically. The 
underlying Σ-Protocols, must 

satisfy some properties
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Stackable Properties
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Stackable Properties
Property 1: Extended Honest Verifier Zero-knowledge

Property 2: Recyclable Third Round Messages

+

=



Stacked Σ-Protocol for Disjunctions

𝑎"

𝑐

𝑧"

…..

Prover Verifier

garbage garbage

𝑥! ∈ 𝐿 𝑥" ∈ 𝐿 𝑥# ∈ 𝐿𝑜𝑟 𝑜𝑟 𝑜𝑟…..Prover 
has 𝑤!

𝐶𝑜𝑚( )

, 𝑟′

Communication = proof size for proving a single branch + size of commitment + size of opening

Can be 
short

At least linear in the 
length of the vector
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Recursive Stacking

𝑥! ∈ 𝐿 𝑥" ∈ 𝐿 𝑥# ∈ 𝐿𝑜𝑟 𝑜𝑟 𝑜𝑟…..

Communication = | Σ | + Commitment + 1Σ" = Stack Σ and Σ1 out of 2 disjunction

Communication = | Σ | + 2 × Commitment + 1 + 1Σ& = Stack Σ" and Σ"1 out of 4 disjunction

Communication = | Σ | + 3 × Commitment + 1 +1 + 1Σ' = Stack Σ& and Σ&1 out of 8 disjunction

Communication = | Σ | + log(n) × Commitment + log(n)Σ# = Stack Σ#/" and Σ#/"1 out of n disjunction

…..
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Many natural sigma protocols are stackable

Example 1: Schnorr’s Σ-Protocol 𝑅 𝑥,𝑤 : 𝑥 =?= 𝑔*

Prover Verifier

𝑎 = 𝑔+

𝑐

z = 𝑐𝑤 + 𝑟

Simulation Strategy: Sample random 𝑧. Compute 𝑎 = 𝑔!𝑥"#

Independent 
of instance
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Examples of Stackable Σ-Protocols
Many natural sigma protocols are stackable

Example 1: Schnorr’s Σ-Protocol 

Example 2: Graph 3-coloring

Example 2: MPC-in-the-head [IKOS] 
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[IKOS07] is Stackable?

Prover Verifier

Run MPC in the head, commit to views of all parties

Choose a random subset of parties

Open views of the chosen parties

Simulator

Choose a random subset of parties

Simulate the views of these parties' using 
simulator of the underlying MPC protocol

Honestly commit to these views and 
garbage for the remaining parties’ views

It is naturally EHVZK. What about recyclable third round messages?

For function 𝑅(𝑥, . ), that 
takes 𝑤 as input 
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𝐹-Universally Simulatable MPC
Adversary’s view in many MPC protocols can be condensed and decoupled from the 

structure of the functionality being evaluated

Example: Many secret sharing-based MPC (e.g. [BGW88])

Simulator simulates random shares for the 
adversary for each of these gates 

Given previously simulated shares and the 
output, simulate the final message

Independent of the function/circuit!

Deterministic computation

Condensed Views

Expanded Views



Modified [IKOS07] for 𝐹-Universally Simulatable MPC

Prover Verifier

Run MPC in the head, commit to views of all parties

Choose a random subset of parties

Condensed views of the chosen parties and 
randomness used in corresponding commitments

For function 𝑅(𝑥, . ), that 
takes 𝑤 as input 



Prover Verifier

Run MPC in the head, commit to views of all parties

Choose a random subset of parties

Condensed views of the chosen parties and 
randomness used in corresponding commitments

Verifier can expand condensed views 
assuming output is 1, check if commitments 
are valid and perform all other consistency 

checks

For function 𝑅(𝑥, . ), that 
takes 𝑤 as input 
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Prover Verifier

Run MPC in the head, commit to views of all parties

Choose a random subset of parties

Condensed views of the chosen parties and 
randomness used in corresponding commitments

Verifier can expand condensed views 
assuming output is 1, check if commitments 
are valid and perform all other consistency 

checks

Since condensed views are independent of 
the functionality, this protocol now has 

recyclable third-round message

For function 𝑅(𝑥, . ), that 
takes 𝑤 as input 

Modified [IKOS07] for 𝐹-Universally Simulatable MPC
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Disjunctions with Different Languages

𝑥! ∈ 𝐿! 𝑥" ∈ 𝐿" 𝑥# ∈ 𝐿#𝑜𝑟 𝑜𝑟 𝑜𝑟…..

Sometimes same protocol works for different languages

Σ! Σ" Σ#

If third round messages are over different fields/rings – represent 
as bits and see what parts can be re-used



Thank You!


