Homomorphic Secret Sharing
with Veritiable Evaluation

Arka Rai Choudhuri Aarushi Goel Aditya Hegde Abhishek Jain
@ NTTResearch JOHNS HOPKINS

TPMPC 2024

Homomorphic Secret Sharing (soyle Giboa-Ishai 16

Client Servers
Xq — Evalg > Y1
X —— Share \
\ Xy »> Evals > Y2

(P
(U

Correctness Evalg(xq)+ Evalg(X5) =f(x)

Security X1 , X2 hidex

Succinctness X1 Xz Y1 Y2 aresuccinct

Public Reconstruction

+ - fx)

Homomorphic Secret Sharing (soyle Giboa-Ishai 16

Client Servers Public Reconstruction
X1 + Evalg > Vi
X — Share q\ + - f(x)
o e
\ X5 > Evalg > Y, \
-

Enables private delegation of computation

Constructions of HSS

[Boyle-Gilboa-Ishai 15]

[Boyle-Gilboa-Ishai 16]
[Boyle-Gilboa-Ishai 17]
[Boyle-Couteau-Gilboa-Ishai-Orru 17]

[Fazio-Gennaro-Jafarikkah-Skeith 17]
[Orlandi-Scholl-Yakoubv 21]
[Roy-Singh 21]
[Chillotti-Orsini-Scholl-Smart-Van-Leeuwen 22]

[Abram-Damgard-Orlandi-Scholl 23]
[Boyle-Kohl-Scholl 19]

[Dodis-Halevi-Rothblum-Wichs 16]
[Boyle-Gilboa-Ishai-Lin-Tessaro 18]
[Lai-Malavolta-Schroder 18]
[Ishai-Lai-Malavolta 21]

[Boyle-Couteau-Gilboa-Ishai-Kohl-Scholl 19]
[Couteau-Meyer 21]
[Dao-Ishai-Jain-Lin 23]

IO + OWF

DDH

DCR

Class Groups

LWE

Homomorphic Encryption

LPN

Constructions of Semi-Honest HSS

[Boyle-Gilboa-Ishai 15]

[Boyle-Gilboa-Ishai 16]
[Boyle-Gilboa-Ishai 17]
[Boyle-Couteau-Gilboa-Ishai-Orru 17]

[Fazio-Gennaro-Jafarikkah-Skeith 17]
[Orlandi-Scholl-Yakoubv 21]
[Roy-Singh 21]
[Chillotti-Orsini-Scholl-Smart-Van-Leeuwen 22]

M[[Abram-Damgard-Orlandi-Scholl 23]]

[Boyle-Kohl-Scholl 19]

[Dodis-Halevi-Rothblum-Wichs 16]
[Boyle-Gilboa-Ishai-Lin-Tessaro 18]
[Lai-Malavolta-Schroder 18]
[Ishai-Lai-Malavolta 21]

[Boyle-Couteau-Gilboa-Ishai-Kohl-Scholl 19]
[Couteau-Meyer 21]
[Dao-Ishai-Jain-Lin 23]

}

—_—

\

IO + OWF

DDH

DCR

Class Groups

LWE

Homomorphic Encryption

LPN

Client

(
X1 > Evals > Y1

Servers

Servers are assumed to be semi-honest

Our Goal: Handling Malicious Servers

X1

X —— Share
" X

Client

» E valf

(s

\

>3’1\
+ —
>}’2/'

Malicious
Servers

Motivation: Private and verifiable delegation of computation

Black box solution!

y

How to verify
y=f(x)?

HSS with Verifiable Evaluation (ve-HSS)

Candidate output

x, — > Evaly ———y, 1 N\

X —— Share + ——y —— Verify — > accept / reject

X, —— Evaly ——— y,

Sharing Evaluation Reconstruct and Verify
Correctness If everyone behaves honestly, then Verify —— accept andy = f(x)
Succinctness X1 X y; Yy, Verify aresuccinct

Security X1 , X2 &outputof Verify hidex

HSS with Verifiable Evaluation (ve-HSS)

Candidate output

x, — > Evaly ———y, 1 N\

X — Share + —— Vv —— Verify — > accept / reject

X, —— Evaly ——— y,

Sharing Evaluation Reconstruct and Verify

Local Soundness Verify — accept,ifand onlyif y = f(x)

Public Soundness Let x = (xpm,, xpub), then Verify — accept ifandonly if 3x,,;,, such that y = f (%10, Xpup)

Soundness should hold even when both servers are corrupt

Comparison with Prior Work

[ADOS 23] Maliciously secure sublinear MPC based on HSS

[TLM18, TM19, TBM20, YO19, CZ21, Varying notions of verifiability in HSS. Most of these
CZ20, ZW22, Che23, HZ20, MTG22] don’t consider soundness when all parties are corrupt.

Our Results

We design a general framework for transforming
semi-honest HSS to HSS with verifiable evaluation using
certain kinds of zkSNARGs.

Applications: Black-box approach for private and verifiable delegation of computation.

Extension: Multi-Client HSS with verifiable evaluation.

Our Results (1° Instantiation)

ve-HSS Function

Semi-Honest HSS SNARG
Class
[Orlandi-Scholl-Yakoubv 21] DCR
[Roy-Singh 21]
[Abram-Damgard-Orlandi-Scholl 23] Class Groups [Groth16] NC1
[Boyle-Kohl-Scholl 19] LWE SIS L2
Model
[Dodis-Halevi-Rothblum-Wichs 16] FHE
[Boyle-Gilboa-Ishai-Lin-Tessaro 18]
P/Poly

[Boyle-Gilboa-Ishai 15] IO + OWF

Our Results (2M9 Instantiation)

HSS Functi
Semi-Honest HSS SNARG V&> Function

Class
[Orlandi-Scholl-Yakoubv 21] DCR
[Roy-Singh 21]
zkBARG based on

[Abram-Damgard-Orlandi-Scholl 23] Class Groups [Waters-Wu 22] SIMD-NC!

[Boyle-Kohl-Scholl 19] LWE Subgroup

decision
[Dodis-Halevi-Rothblum-Wichs 16] FHE assumption
[Boyle-Gilboa-Ishai-Lin-Tessaro 18]
SIMD-P /Poly
[Boyle-Gilboa-Ishai 15] IO + OWF

Our Construction

Strawman ApprOaCh ([Goldreich-Micali-Wigderson 87] Inspired)

Proof for:
Evalg(x1) =y,

"0 Verify(“%) - 0/1
x, —— Evalf >y, %T§ 5T§
4 \ "

X — Share Verify(R) - 0/1

X, — > Evalf > Y,
yi + y2 = f(x)

Proof for:
Evals(x3) =y,

Evals is a cryptographic function!

e
Generating ?&,R will require non-black-box use of cryptography
4

roof for:
x)=y

1%

)—0/1

Our Starting Idea (One Joint Proof) %
"

x, —— Evalf

4! S \
/ Verify(
" Y2 R

Yi + Y2 Y

X — Share

X, — > Evalf

How can we generate these proof shares?

Prover algorithm is a cryptographic function!

Computing it using HSS will require non-black-box use of cryptography

General SNARG Computation

Prover Algorithm (Relation R)

CTs, . . .
Witness w, 4{ Non-Cryptc.)graphch _»[Cryptogr_aphlc} Non—Cryptqgraphlc
Statement st Operations Operations Operations

SN—— A

Compute using HsS Compute using Hss

|

Cryptographic
Operations

|

l

Proof

Splittable SNARGs

Prover Algorithm (Relation R)

crs
Witness w, [1;: Low Depth Non- K [1,: Linearly Distributable
Statement st Cryptographic Operations ’ Cryptographic Operations

} ey PrOOF

Let 1 = py + Uy, then I, (crs, st, u) = I, (crs, st, 1q) X I, (crs, st, 1)

[_El/scﬁe function]

Splittable SNARGs

Prover Algorithm (Relation R)

/\

Witness 1z [1;: Low Depth Non- [1,: Linearly Distributable oroof
}gﬂm Cryptographic Operations ’ Cryptographic Operations —>
obtain additive shares obtain shares of
HSS shares of w, st the final proof

Locally compute I1; on
shares of u

Compute using HsS

Candidate Approach using Splittable SNARGs

Computing shares of a proof for the deterministic relation: f(x) = y;+ y,

HSS.Evaly ——— y,
X1 <
HSS.Evalp,

X —— Share

HSS.Evaly —— vy,
Xy <
HSS.Evalp, U I,

251 I1,

E

\ 4

Evaluation in ve-HSS

Reconstruction and

Verification by the client: i+ Y2 Y

1=0-%

R

Verify(x, y,R) - 0/1

Candidate Approach using Splittable SNARGs

qurrectness
A" Succinctness

dLocaI Soundness

Public Soundness

x Privacy

E n S u rl n g P rlva Cy (How to predict the output of\

honest client in the ideal
world, only based on this

proof share? y
r \/<

HSS.Evaly — > y
X / . ! [Computed by]
1 .
[HSS. Evaly, 1y I, | S adversarial server
J

X —— Share _

-

\
/ HSS.Evaly ——— vy,
X2 Computed by
B HSS.Evalp, U "M, — { [honest server

\ /

Is it safe to reveal this share

when the final computation is VES!
incorrect? .

_

Distributed Prover Robust Verification

For a fixed R

computed by the honest server,

a PPT adversary can only find one i such that i 5 R—> R verifies.

X1

X — Share

Simulator can recompute
this to check if it was
' honestly generated.
\

(

/ HSS.Evaly ——— y;

- HSS. Evaly, i I,

.

(/v HSS.Evaly —— vy,

T HSS. Evaly, U n, ——

\ g J

Distributed Prover Robust Verification

qurrectness
\WSuccinctness

dLocaI Soundness
Public Soundness

 Privacy

Adding Public Soundness

Compute two proofs:

Local Proof: For the deterministic relation: R cq1 = {((f, %, ¥1, V) | st. f(x) = yi1+ v}

Public Proof: For the relation: Ry, = {(f, Xpun, Y1, ¥2) | 3 Xprivs St f(Xprivs Xpup) = Y1+ Y2}

\{Correctness

A Succinctness

dLocaI Soundness
VPuinc Soundness

A" Privacy

Summary of Construction

HSS.Evaly —— y,

X1
HSS.Evaly, — uy
HSS.Evalg, — 1
X —— Share
HSS.Evaly ——— vy,
X2

HSS.Evalg, — > 1

HSS.Evalg, — 1

4’1’[24'&

Examples of Splittable zkSNARKSs

[Groth16] zkSNARKSs are splittable

On the Size of Pairing-based Non-interactive Arguments*

Jens Groth*™*

University College London, UK
j.groth@ucl.ac.uk

Abstract. Non-interactive arguments enable a prover to convince a verifier that a state-
ment is true. Recently there has been a lot of progress both in theory and practice on
constructing highly efficient non-interactive arguments with small size and low verifi-
cation complexity, so-called succinct non-interactive arguments (SNARGs) and succinct
non-interactive arguments of knowledge (SNARKSs).

Many constructions of SNARGs rely on pairing-based cryptography. In these constructions
a proof consists of a number of group elements and the verification consists of checking
a number of pairing product equations. The question we address in this article is how

Our zero-knowledge version of
[Waters-Wu 22] BARGSs are splittable

Batch Arguments for NP and More
from Standard Bilinear Group Assumptions

Brent Waters David J. Wu
UT Austin and NTT Research UT Austin
bwaters@cs.utexas.edu dwudQcs.utexas.edu
Abstract

Non-interactive batch arguments for NP provide a way to amortize the cost of NP verification across multiple
instances. They enable a prover to convince a verifier of multiple NP statements with communication much smaller
than the total witness length and verification time much smaller than individually checking each instance.

In this work, we give the first construction of a non-interactive batch argument for NP from standard assumptions
on groups with bilinear maps (specifically, from either the subgroup decision assumption in composite-order groups
or from the k-Lin assumption in prime-order groups for any k > 1). Previously, batch arguments for NP were only

known from LWE, or a combination of multiple assumptions, or from non-standard/non-falsifiable assumptions.
M 1 warl intrad Lo dios b for hatch varification and avaide haava taals lik. lati

[Groth16] zkSNARKSs are Splittable

Extended witness
generation

Step 1

—

Additional constant depth
field operations

Step 2

—

Combining with CRS

Step 3

[Groth16] zkSNARKSs are Splittable

Extended witness
generation

Step 1

\

—

Additional constant depth
field operations

Step 2

Y

Low-depth non-cryptographic operations

—

J

Combining with CRS # AB,C

Step 3 Proof

4 1—[Qiai([Output of Step 2]
IE[m]
‘\{ CRS terms]

\ J

Y

Linearly distributable
cryptographic operations

Applications

(Private and Verifiable Delegation of Computation)

Delegating Non-Cryptographic Functions

~ q\ Output can be
¢ reconstructed and
\ (P verified by anyone

v

»

Our solution: Non-interactive and black box

P‘ Q P‘ Publicly
\ > » . —— verifiable
\ \ \ output

FHE based approach [GGW24,ACGSV23]:
requires client to intervene

Delegating zkSNARK Computation

Client wants to outsource the computation of a (splittable) zkSNARK for the relation:
R = {(f, X = Xpyp 1) | 3 xprip=w,st. f(x,w) = 1}

Use our ve-HSS for computing function f

x, ———— Evalf > Y1 \
Correspond to shares of

the desired zkSNARK
X, —— > Ewvalf — Y, i /

X — Share

Non-interactive and black box solution

Delegating zkSNARK Computation

Comparison with Prior Work

MPC based approaches
[GGJ+23, CLMZ23, LZW+24]

Many rounds of interaction

FHE based approach
[GGW24]

Requires client to intervene
Final proof is different from
the original scheme

>f

Ssummary

A new notion of HSS with verifiable evaluation

A general framework for adding verifiability to semi-honest HSS using splittable SNARGs

Instantiations of splittable SNARGs
Applications to private and verifiable delegation of non-cryptographic and zkSNARK computations

Extension to multi-client HSS with verifiable evaluation

Open Questions

A framework using HSS schemes that have non-negligible correctness error
Other examples and applications of splittable SNARGs

Distributed prover robust verification using MACs

Thank you!

