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Enables private delegation of computation
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Constructions of Semi-Honest HSS
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Servers are assumed to be semi-honest




Our Goal: Handling Malicious Servers
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Motivation: Private and verifiable delegation of computation

Black box solution!
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How to verify
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HSS with Verifiable Evaluation (ve-HSS)

Candidate output
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HSS with Verifiable Evaluation (ve-HSS)

Candidate output

x, — > Evaly ———y, 1 N\

X —  Share + —— Vv —— Verify — > accept / reject

X, —— Evaly ——— y,

Sharing Evaluation Reconstruct and Verify

Local Soundness Verify — accept,ifand onlyif y = f(x)

Public Soundness  Let x = (xpm,, xpub), then Verify — accept ifandonly if 3x,,;,, such that y = f (%10, Xpup)

Soundness should hold even when both servers are corrupt




Comparison with Prior Work

[ADOS 23] Maliciously secure sublinear MPC based on HSS

[TLM18, TM19, TBM20, YO19, CZ21, Varying notions of verifiability in HSS. Most of these
CZ20, ZW22, Che23, HZ20, MTG22] don’t consider soundness when all parties are corrupt.



Our Results

We design a general framework for transforming
semi-honest HSS to HSS with verifiable evaluation using
certain kinds of zkSNARGs.

Applications: Black-box approach for private and verifiable delegation of computation.

Extension: Multi-Client HSS with verifiable evaluation.



Our Results (1° Instantiation)

ve-HSS Function

Semi-Honest HSS SNARG
Class
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Our Results (2M9 Instantiation)

HSS Functi
Semi-Honest HSS SNARG V&> Function

Class
[Orlandi-Scholl-Yakoubv 21] DCR
[Roy-Singh 21]
zkBARG based on

[Abram-Damgard-Orlandi-Scholl 23] Class Groups [Waters-Wu 22] SIMD-NC!

[Boyle-Kohl-Scholl 19] LWE Subgroup

decision
[Dodis-Halevi-Rothblum-Wichs 16] FHE assumption
[Boyle-Gilboa-Ishai-Lin-Tessaro 18]
SIMD-P /Poly
[Boyle-Gilboa-Ishai 15] IO + OWF




Our Construction



Strawman ApprOaCh ([Goldreich-Micali-Wigderson 87] Inspired)

Proof for:
Evalg(x1) =y,
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X, — > Evalf > Y,
yi + y2 = f(x)

Proof for:
Evals(x3) =y,

Evals is a cryptographic function!

e
Generating ?&,R will require non-black-box use of cryptography
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roof for:
x)=y
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Our Starting Idea (One Joint Proof) %
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How can we generate these proof shares?

Prover algorithm is a cryptographic function!

Computing it using HSS will require non-black-box use of cryptography



General SNARG Computation

Prover Algorithm (Relation R)
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Splittable SNARGs

Prover Algorithm (Relation R)

crs
Witness w, [1;: Low Depth Non- K [1,: Linearly Distributable
Statement st Cryptographic Operations ’ Cryptographic Operations

} ey PrOOF

Let 1 = py + Uy, then I, (crs, st, u) = I, (crs, st, 1q) X I, (crs, st, 1)

[_El/scﬁe function ]




Splittable SNARGs

Prover Algorithm (Relation R)

/\

Witness 1z [1;: Low Depth Non- [1,: Linearly Distributable oroof
}gﬂm Cryptographic Operations ’ Cryptographic Operations —>
obtain additive shares obtain shares of
HSS shares of w, st the final proof

Locally compute I1; on
shares of u

Compute using HsS



Candidate Approach using Splittable SNARGs

Computing shares of a proof for the deterministic relation: f(x) = y;+ y,
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Candidate Approach using Splittable SNARGs
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E n S u rl n g P rlva Cy (How to predict the output of\
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Distributed Prover Robust Verification

For a fixed R

computed by the honest server,

a PPT adversary can only find one i such that i 5 R—> R verifies.

X1
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Simulator can recompute
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' honestly generated.
\

(

/ HSS.Evaly ——— y;

- HSS. Evaly, i I,

.

(/v HSS.Evaly —— vy,

T HSS. Evaly, U n, ——

\ g J




Distributed Prover Robust Verification

qurrectness
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Adding Public Soundness

Compute two proofs:

Local Proof:  For the deterministic relation: R cq1 = {((f, %, ¥1, V) | st. f(x) = yi1+ v}

Public Proof:  For the relation: Ry, = {( f, Xpun, Y1, ¥2) | 3 Xprivs St f( Xprivs Xpup) = Y1+ Y2}

\{Correctness

A Succinctness

dLocaI Soundness
VPuinc Soundness

A" Privacy




Summary of Construction
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Examples of Splittable zkSNARKSs

[Groth16] zkSNARKSs are splittable

On the Size of Pairing-based Non-interactive Arguments*

Jens Groth*™*

University College London, UK
j.groth@ucl.ac.uk

Abstract. Non-interactive arguments enable a prover to convince a verifier that a state-
ment is true. Recently there has been a lot of progress both in theory and practice on
constructing highly efficient non-interactive arguments with small size and low verifi-
cation complexity, so-called succinct non-interactive arguments (SNARGs) and succinct
non-interactive arguments of knowledge (SNARKSs).

Many constructions of SNARGs rely on pairing-based cryptography. In these constructions
a proof consists of a number of group elements and the verification consists of checking
a number of pairing product equations. The question we address in this article is how

Our zero-knowledge version of
[Waters-Wu 22] BARGSs are splittable

Batch Arguments for NP and More
from Standard Bilinear Group Assumptions

Brent Waters David J. Wu
UT Austin and NTT Research UT Austin
bwaters@cs.utexas.edu dwudQcs.utexas.edu
Abstract

Non-interactive batch arguments for NP provide a way to amortize the cost of NP verification across multiple
instances. They enable a prover to convince a verifier of multiple NP statements with communication much smaller
than the total witness length and verification time much smaller than individually checking each instance.

In this work, we give the first construction of a non-interactive batch argument for NP from standard assumptions
on groups with bilinear maps (specifically, from either the subgroup decision assumption in composite-order groups
or from the k-Lin assumption in prime-order groups for any k > 1). Previously, batch arguments for NP were only

known from LWE, or a combination of multiple assumptions, or from non-standard/non-falsifiable assumptions.
M 1 warl intrad Lo dios b for hatch varification and avaide haava taals lik. lati




[Groth16] zkSNARKSs are Splittable

Extended witness
generation

Step 1
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Additional constant depth
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Combining with CRS
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[Groth16] zkSNARKSs are Splittable

Extended witness
generation

Step 1

\

—

Additional constant depth
field operations

Step 2
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Low-depth non-cryptographic operations
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Combining with CRS # AB,C

Step 3 Proof

4 1—[ Qiai([ Output of Step 2 ]
IE[m]
‘\{ CRS terms ]

\ J
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Linearly distributable
cryptographic operations



Applications

(Private and Verifiable Delegation of Computation)



Delegating Non-Cryptographic Functions

~ q\ Output can be
¢ reconstructed and
\ (P verified by anyone

v

»

Our solution: Non-interactive and black box

P‘ Q P‘ Publicly
\ > » . —— verifiable
\ \ \ output

FHE based approach [GGW24,ACGSV23]:
requires client to intervene




Delegating zkSNARK Computation

Client wants to outsource the computation of a (splittable) zkSNARK for the relation:
R = {(f, X = Xpyp 1) | 3 xprip=w,st. f(x,w) = 1}

Use our ve-HSS for computing function f

x, ———— Evalf > Y1 \
Correspond to shares of

the desired zkSNARK
X, —— > Ewvalf — Y, i /

X — Share

Non-interactive and black box solution



Delegating zkSNARK Computation

Comparison with Prior Work

MPC based approaches
[GGJ+23, CLMZ23, LZW+24]

Many rounds of interaction

FHE based approach
[GGW24]

Requires client to intervene
Final proof is different from
the original scheme

>f



Ssummary

A new notion of HSS with verifiable evaluation

A general framework for adding verifiability to semi-honest HSS using splittable SNARGs

Instantiations of splittable SNARGs
Applications to private and verifiable delegation of non-cryptographic and zkSNARK computations

Extension to multi-client HSS with verifiable evaluation



Open Questions

A framework using HSS schemes that have non-negligible correctness error
Other examples and applications of splittable SNARGs

Distributed prover robust verification using MACs
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