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Homomorphic Secret Sharing [Boyle-Gilboa-Ishai 16]

Enables private delegation of computation
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Servers

Servers are assumed to be semi-honest
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Our Goal: Handling Malicious Servers
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Motivation: Private and verifiable delegation of computation

Black box solution!

How to verify 
𝑦 = 𝑓 𝑥 ?



HSS with Verifiable Evaluation (ve-HSS)
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HSS with Verifiable Evaluation (ve-HSS)

Local Soundness 𝑉𝑒𝑟𝑖𝑓𝑦 accept, if and only if	𝑦 = 𝑓(𝑥)

Public Soundness if and only if ∃𝑥$%&' ,	such that 𝑦 = 𝑓(𝑥$%&' , 𝑥$())Let 𝑥 = 𝑥$%&' , 𝑥$() , then 𝑉𝑒𝑟𝑖𝑓𝑦 accept

Soundness should hold even when both servers are corrupt
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Comparison with Prior Work

[ADOS 23] Maliciously secure sublinear MPC based on HSS

[TLM18, TM19, TBM20, YO19, CZ21, 
CZ20, ZW22, Che23, HZ20, MTG22]

Varying notions of verifiability in HSS. Most of these 
don’t consider soundness when all parties are corrupt.



Our Results

Black-box approach for private and verifiable delegation of computation.

We design a general framework for transforming
semi-honest HSS to HSS with verifiable evaluation using 

certain kinds of zkSNARGs.

Multi-Client HSS with verifiable evaluation.

Applications:

Extension:



Our Results (1st Instantiation)
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Our Results (2nd Instantiation)

[Boyle-Gilboa-Ishai 15] IO + OWF

FHE

DCR

Class Groups

LWE Subgroup 
decision

    assumption[Dodis-Halevi-Rothblum-Wichs 16]
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SIMD-𝑁𝐶!

SIMD-𝑃/𝑃𝑜𝑙𝑦

SNARG ve-HSS Function
 ClassSemi-Honest HSS

zkBARG based on 
[Waters-Wu 22] 



Our Construction



Strawman Approach ([Goldreich-Micali-Wigderson 87] Inspired)
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Our Starting Idea (One Joint Proof)

𝑥
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→ 𝑦𝑦! 𝑦"

→

𝑉𝑒𝑟𝑖𝑓𝑦(	 ) → 0/1

How can we generate these proof shares?

Proof for:
𝑓 𝑥 = 𝑦

Prover algorithm is a cryptographic function! 

Computing it using HSS will require non-black-box use of cryptography  



General SNARG Computation

Non-Cryptographic 
Operations

Cryptographic 
Operations

Proof

𝑐𝑟𝑠, 
Witness 𝑤,	

Statement 𝑠𝑡
Non-Cryptographic 

Operations
Cryptographic 

Operations

Compute using HSS Compute using HSS

Prover Algorithm (Relation ℛ)



Splittable SNARGs
Prover Algorithm (Relation ℛ)

Π!:	Low Depth Non-
Cryptographic Operations

Π":	Linearly Distributable 
Cryptographic Operations Proof

𝑐𝑟𝑠 

Witness 𝑤,	
Statement 𝑠𝑡

𝜇

Let 𝜇 = 𝜇! + 𝜇", then Π" crs, st, 𝜇 = Π" crs, st, 𝜇!  ⊠	Π" crs, st, 𝜇"

∃	some function



Splittable SNARGs
Prover Algorithm (Relation ℛ)

Π!:	Low Depth Non-
Cryptographic Operations

Π":	Linearly Distributable 
Cryptographic Operations Proof

𝑐𝑟𝑠 

Witness 𝑤,	
Statement 𝑠𝑡

Obtain additive shares

Compute using HSS
Locally compute Π" on 

shares of 𝜇

Obtain shares of 
the final proofHSS shares of 𝑤, st

𝜇



Candidate Approach using Splittable SNARGs
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Verification by the client:

Computing shares of a proof for the deterministic relation: 𝑓 𝑥 =	𝑦"+ 𝑦#



Candidate Approach using Splittable SNARGs
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Evaluation in ve-HSS

Reconstruct and Verify:

Compute shares of a proof for the deterministic relation: 𝑓 𝑥 =	𝑦"+ 𝑦#

q Correctness
q Succinctness
q Local Soundness
q Public Soundness
q Privacy



Ensuring Privacy
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Computed by 
adversarial server

Computed by 
honest server

How to predict the output of 
honest client in the ideal 
world, only based on this 

proof share?

Is it safe to reveal this share 
when the final computation is 

incorrect? YES!!



Distributed Prover Robust Verification
For a fixed        computed by the honest server,

→⊠a PPT adversary can only find one such that                         verifies.
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Simulator can recompute 
this to check if it was 
honestly generated.



Distributed Prover Robust Verification
For a fixed        computed by the honest server,

→⊠a PPT adversary can only find one such that                          verifies.
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Computed by 
adversarial server

Computed by 
honest server

Simulator can recompute this 
to check if it was honestly 
generated and decide the 

output accordingly.

q Correctness
q Succinctness
q Local Soundness
q Public Soundness
q Privacy



Adding Public Soundness

Compute two proofs:

Local Proof: For the deterministic relation: ℛ+,-.+ = 𝑓, 𝑥, 	𝑦! ,	𝑦" 	|	𝑠𝑡. 𝑓 𝑥 = 	𝑦!+ 𝑦"  

Public Proof: For the relation: ℛ$() = 	𝑓,	𝑥$() , 𝑦!,	𝑦" 	|	∃	𝑥$%&' , 𝑠𝑡. 𝑓 	𝑥$%&' ,	𝑥$() = 	𝑦!+ 𝑦"

q Correctness
q Succinctness
q Local Soundness
q Public Soundness
q Privacy



Summary of Construction
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Examples of Splittable zkSNARKs

Our zero-knowledge version of 
[Waters-Wu 22] BARGs are splittable

[Groth16] zkSNARKs are splittable



[Groth16] zkSNARKs are Splittable

Extended witness 
generation

Step 1

Additional constant depth 
field operations Combining with CRS

Step 2 Step 3 Proof

𝐴, 𝐵, 𝐶



[Groth16] zkSNARKs are Splittable

Extended witness 
generation

Step 1

Additional constant depth 
field operations Combining with CRS

Step 2 Step 3 Proof

Low-depth non-cryptographic operations
𝐴 = N

&∈[2]

𝑄&4"

𝐴, 𝐵, 𝐶

Output of Step 2

CRS terms

Linearly distributable
 cryptographic operations



Applications
(Private and Verifiable Delegation of Computation) 



Delegating Non-Cryptographic Functions

Our solution: Non-interactive and black box

Output can be 
reconstructed and 
verified by anyone

Publicly 
verifiable 

output

FHE based approach [GGW24,ACGSV23]: 
requires client to intervene



Delegating zkSNARK Computation

Client wants to outsource the computation of a (splittable) zkSNARK for the relation:

𝑥

𝑥!

𝑥"

𝑦!𝐸𝑣𝑎𝑙#

𝑆ℎ𝑎𝑟𝑒

𝐸𝑣𝑎𝑙# 𝑦"

ℛ	 = 𝑓,	𝑥 = 𝑥$() , 1 	|	∃	𝑥$%&'= 𝑤, 𝑠𝑡. 𝑓 𝑥, 𝑤 = 1

Use our ve-HSS for computing function 𝑓	

Correspond to shares of 
the desired zkSNARK

Non-interactive and black box solution



Delegating zkSNARK Computation

Client wants to outsource the computation of a (splittable) zkSNARK for the relation:

𝑥

𝑥!

𝑥"

𝑦!𝐸𝑣𝑎𝑙#

𝑆ℎ𝑎𝑟𝑒

𝐸𝑣𝑎𝑙# 𝑦"

ℛ	 = 𝑓,	𝑥 = 𝑥$() , 1 	|	∃	𝑥$%&'= 𝑤, 𝑠𝑡. 𝑓 𝑥, 𝑤 = 1

Use our ve-HSS for computing function 𝑓	

Correspond to shares of 
the desired zkSNARK

Non-interactive and black box solution

Comparison with Prior Work

MPC based approaches
[GGJ+23, CLMZ23, LZW+24]

FHE based approach 
[GGW24]

• Requires client to intervene
• Final proof is different from 

the original scheme

• Many rounds of interaction



Summary

A new notion of HSS with verifiable evaluation

A general framework for adding verifiability to semi-honest HSS using splittable SNARGs

Instantiations of splittable SNARGs

Applications to private and verifiable delegation of non-cryptographic and zkSNARK computations

Extension to multi-client HSS with verifiable evaluation



Open Questions

A framework using HSS schemes that have non-negligible correctness error

Other examples and applications of splittable SNARGs

Distributed prover robust verification using MACs



Thank you!


