
Homomorphic Secret Sharing
with Verifiable Evaluation

Arka Rai Choudhuri Aarushi Goel Aditya Hegde Abhishek Jain

TPMPC 2024

Homomorphic Secret Sharing [Boyle-Gilboa-Ishai 16]

𝑥

𝑥!

𝑥"

𝑦!

𝑦"

𝑓(𝑥)

𝐸𝑣𝑎𝑙#

𝑆ℎ𝑎𝑟𝑒

𝐸𝑣𝑎𝑙#

Correctness

Security

Succinctness

𝐸𝑣𝑎𝑙!(𝑥")+ 𝐸𝑣𝑎𝑙! 	 = 𝑓(𝑥) 𝑥" 𝑥#

, hide 𝑥 𝑥" 𝑥#

, are succinct𝑥" 𝑥#

Client Servers Public Reconstruction

𝑦" 𝑦#

Homomorphic Secret Sharing [Boyle-Gilboa-Ishai 16]

Enables private delegation of computation

𝑥

𝑥!

𝑥"

𝑦!

𝑦"

𝑓(𝑥)

𝐸𝑣𝑎𝑙#

𝑆ℎ𝑎𝑟𝑒

𝐸𝑣𝑎𝑙#

Client Servers Public Reconstruction

Constructions of
[Boyle-Gilboa-Ishai 15]

[Boyle-Gilboa-Ishai 16]
[Boyle-Gilboa-Ishai 17]

[Boyle-Couteau-Gilboa-Ishai-Orru 17]

[Fazio-Gennaro-Jafarikkah-Skeith 17]
[Orlandi-Scholl-Yakoubv 21]

[Roy-Singh 21]
[Chillotti-Orsini-Scholl-Smart-Van-Leeuwen 22]

[Abram-Damgard-Orlandi-Scholl 23]

[Boyle-Kohl-Scholl 19]

[Dodis-Halevi-Rothblum-Wichs 16]
[Boyle-Gilboa-Ishai-Lin-Tessaro 18]

[Lai-Malavolta-Schroder 18]
[Ishai-Lai-Malavolta 21]

[Boyle-Couteau-Gilboa-Ishai-Kohl-Scholl 19]
[Couteau-Meyer 21]

[Dao-Ishai-Jain-Lin 23]

IO + OWF

DDH

Homomorphic Encryption

DCR

Class Groups

LWE

LPN

HSS

[Boyle-Gilboa-Ishai 15]

[Boyle-Gilboa-Ishai 16]
[Boyle-Gilboa-Ishai 17]

[Boyle-Couteau-Gilboa-Ishai-Orru 17]

[Fazio-Gennaro-Jafarikkah-Skeith 17]
[Orlandi-Scholl-Yakoubv 21]

[Roy-Singh 21]
[Chillotti-Orsini-Scholl-Smart-Van-Leeuwen 22]

[Abram-Damgard-Orlandi-Scholl 23]

[Boyle-Kohl-Scholl 19]

[Dodis-Halevi-Rothblum-Wichs 16]
[Boyle-Gilboa-Ishai-Lin-Tessaro 18]

[Lai-Malavolta-Schroder 18]
[Ishai-Lai-Malavolta 21]

[Boyle-Couteau-Gilboa-Ishai-Kohl-Scholl 19]
[Couteau-Meyer 21]

[Dao-Ishai-Jain-Lin 23]

IO + OWF

DDH

Homomorphic Encryption

DCR

Class Groups

LWE

LPN

Exception

Constructions of HSSSemi-Honest

[Boyle-Gilboa-Ishai 15]

[Boyle-Gilboa-Ishai 16]
[Boyle-Gilboa-Ishai 17]

[Boyle-Couteau-Gilboa-Ishai-Orru 17]

[Fazio-Gennaro-Jafarikkah-Skeith 17]
[Orlandi-Scholl-Yakoubv 21]

[Roy-Singh 21]
[Chillotti-Orsini-Scholl-Smart-Van-Leeuwen 22]

[Abram-Damgard-Orlandi-Scholl 23]

[Boyle-Kohl-Scholl 19]

[Dodis-Halevi-Rothblum-Wichs 16]
[Boyle-Gilboa-Ishai-Lin-Tessaro 18]

[Lai-Malavolta-Schroder 18]
[Ishai-Lai-Malavolta 21]

[Boyle-Couteau-Gilboa-Ishai-Kohl-Scholl 19]
[Couteau-Meyer 21]

[Dao-Ishai-Jain-Lin 23]

IO + OWF

DDH

Homomorphic Encryption

DCR

Class Groups

LWE

LPN

Constructions of HSSSemi-Honest

Servers

Servers are assumed to be semi-honest

𝑥

𝑥!

𝑥"

𝑦!

𝑦"

𝑓(𝑥)

𝐸𝑣𝑎𝑙#

𝑆ℎ𝑎𝑟𝑒

𝐸𝑣𝑎𝑙#

Client

Our Goal: Handling Malicious Servers

𝑥

𝑥!

𝑥"

𝑦!

𝑦"

𝑦

𝐸𝑣𝑎𝑙#

𝑆ℎ𝑎𝑟𝑒

𝐸𝑣𝑎𝑙#

Client Malicious
Servers

Motivation: Private and verifiable delegation of computation

Black box solution!

How to verify
𝑦 = 𝑓 𝑥 ?

HSS with Verifiable Evaluation (ve-HSS)

𝑥
𝑥!

𝑥"

𝑦!

𝑦"

𝑦
𝐸𝑣𝑎𝑙#

𝑆ℎ𝑎𝑟𝑒

𝐸𝑣𝑎𝑙#

𝑉𝑒𝑟𝑖𝑓𝑦 accept / reject

Sharing Evaluation Reconstruct

Candidate output

Correctness

Security

Succinctness

, & output of hide 𝑥 𝑥" 𝑥#

are succinct𝑥" 𝑥# 𝑉𝑒𝑟𝑖𝑓𝑦

If everyone behaves honestly, then and 𝑦 = 𝑓(𝑥)

𝑉𝑒𝑟𝑖𝑓𝑦

𝑉𝑒𝑟𝑖𝑓𝑦 accept

and Verify

𝑦" 𝑦#

HSS with Verifiable Evaluation (ve-HSS)

Local Soundness 𝑉𝑒𝑟𝑖𝑓𝑦 accept, if and only if	𝑦 = 𝑓(𝑥)

Public Soundness if and only if ∃𝑥$%&' ,	such that 𝑦 = 𝑓(𝑥$%&' , 𝑥$())Let 𝑥 = 𝑥$%&' , 𝑥$() , then 𝑉𝑒𝑟𝑖𝑓𝑦 accept

Soundness should hold even when both servers are corrupt

𝑥
𝑥!

𝑥"

𝑦!

𝑦"

𝑦
𝐸𝑣𝑎𝑙#

𝑆ℎ𝑎𝑟𝑒

𝐸𝑣𝑎𝑙#

𝑉𝑒𝑟𝑖𝑓𝑦 accept / reject

Sharing Evaluation Reconstruct and Verify

Candidate output

Comparison with Prior Work

[ADOS 23] Maliciously secure sublinear MPC based on HSS

[TLM18, TM19, TBM20, YO19, CZ21,
CZ20, ZW22, Che23, HZ20, MTG22]

Varying notions of verifiability in HSS. Most of these
don’t consider soundness when all parties are corrupt.

Our Results

Black-box approach for private and verifiable delegation of computation.

We design a general framework for transforming
semi-honest HSS to HSS with verifiable evaluation using

certain kinds of zkSNARGs.

Multi-Client HSS with verifiable evaluation.

Applications:

Extension:

Our Results (1st Instantiation)

[Boyle-Gilboa-Ishai 15] IO + OWF

FHE

DCR

Class Groups

LWE Generic Group
Model

[Dodis-Halevi-Rothblum-Wichs 16]
[Boyle-Gilboa-Ishai-Lin-Tessaro 18]

[Orlandi-Scholl-Yakoubv 21]
[Roy-Singh 21]

[Abram-Damgard-Orlandi-Scholl 23]

[Boyle-Kohl-Scholl 19]

𝑁𝐶!

𝑃/𝑃𝑜𝑙𝑦

SNARG ve-HSS Function
 Class

Semi-Honest HSS

[Groth16]

Our Results (2nd Instantiation)

[Boyle-Gilboa-Ishai 15] IO + OWF

FHE

DCR

Class Groups

LWE Subgroup
decision

 assumption[Dodis-Halevi-Rothblum-Wichs 16]
[Boyle-Gilboa-Ishai-Lin-Tessaro 18]

[Orlandi-Scholl-Yakoubv 21]
[Roy-Singh 21]

[Abram-Damgard-Orlandi-Scholl 23]

[Boyle-Kohl-Scholl 19]

SIMD-𝑁𝐶!

SIMD-𝑃/𝑃𝑜𝑙𝑦

SNARG ve-HSS Function
 ClassSemi-Honest HSS

zkBARG based on
[Waters-Wu 22]

Our Construction

Strawman Approach ([Goldreich-Micali-Wigderson 87] Inspired)

𝑥

𝑥!

𝑥"

𝑦!

𝑦"

𝐸𝑣𝑎𝑙#

𝑆ℎ𝑎𝑟𝑒

𝐸𝑣𝑎𝑙#

𝑉𝑒𝑟𝑖𝑓𝑦() → 0/1

𝑉𝑒𝑟𝑖𝑓𝑦() → 0/1

Proof for:
𝐸𝑣𝑎𝑙! 	𝑥" =	𝑦"

Proof for:
𝐸𝑣𝑎𝑙! 	𝑥# =	𝑦#

→ 𝑓(𝑥)𝑦! 𝑦"

𝐸𝑣𝑎𝑙; is a cryptographic function!

Generating , will require non-black-box use of cryptography

Our Starting Idea (One Joint Proof)

𝑥

𝑥!

𝑥"

𝑦!𝐸𝑣𝑎𝑙#

𝑆ℎ𝑎𝑟𝑒

𝐸𝑣𝑎𝑙# 𝑦"
→ 𝑦𝑦! 𝑦"

→

𝑉𝑒𝑟𝑖𝑓𝑦() → 0/1

How can we generate these proof shares?

Proof for:
𝑓 𝑥 = 𝑦

Prover algorithm is a cryptographic function!

Computing it using HSS will require non-black-box use of cryptography

General SNARG Computation

Non-Cryptographic
Operations

Cryptographic
Operations

Proof

𝑐𝑟𝑠,
Witness 𝑤,	

Statement 𝑠𝑡
Non-Cryptographic

Operations
Cryptographic

Operations

Compute using HSS Compute using HSS

Prover Algorithm (Relation ℛ)

Splittable SNARGs
Prover Algorithm (Relation ℛ)

Π!:	Low Depth Non-
Cryptographic Operations

Π":	Linearly Distributable
Cryptographic Operations Proof

𝑐𝑟𝑠

Witness 𝑤,	
Statement 𝑠𝑡

𝜇

Let 𝜇 = 𝜇! + 𝜇", then Π" crs, st, 𝜇 = Π" crs, st, 𝜇! ⊠	Π" crs, st, 𝜇"

∃	some function

Splittable SNARGs
Prover Algorithm (Relation ℛ)

Π!:	Low Depth Non-
Cryptographic Operations

Π":	Linearly Distributable
Cryptographic Operations Proof

𝑐𝑟𝑠

Witness 𝑤,	
Statement 𝑠𝑡

Obtain additive shares

Compute using HSS
Locally compute Π" on

shares of 𝜇

Obtain shares of
the final proofHSS shares of 𝑤, st

𝜇

Candidate Approach using Splittable SNARGs

𝜇!

𝜇"

Π"

Π"

→ 𝑦𝑦! 𝑦" 𝑉𝑒𝑟𝑖𝑓𝑦(𝑥, 𝑦,) → 0/1→⊠

𝑥

𝑥!

𝑥"

𝑦!𝐻𝑆𝑆. 𝐸𝑣𝑎𝑙#

𝑆ℎ𝑎𝑟𝑒

𝑦"

𝐻𝑆𝑆. 𝐸𝑣𝑎𝑙*!

𝐻𝑆𝑆. 𝐸𝑣𝑎𝑙#

𝐻𝑆𝑆. 𝐸𝑣𝑎𝑙*!

Evaluation in ve-HSS

Reconstruction and
Verification by the client:

Computing shares of a proof for the deterministic relation: 𝑓 𝑥 =	𝑦"+ 𝑦#

Candidate Approach using Splittable SNARGs

𝜇!

𝜇"

Π"

Π"

Output shares

𝑦!

𝑦"

→ 𝑦𝑦! 𝑦" 𝑉𝑒𝑟𝑖𝑓𝑦(𝑥, 𝑦,) → 0/1→⊠

𝑥

𝑥!

𝑥"

𝑦!𝐻𝑆𝑆. 𝐸𝑣𝑎𝑙#

𝑆ℎ𝑎𝑟𝑒

𝑦"

𝐻𝑆𝑆. 𝐸𝑣𝑎𝑙*!

𝐻𝑆𝑆. 𝐸𝑣𝑎𝑙#

𝐻𝑆𝑆. 𝐸𝑣𝑎𝑙*!

Evaluation in ve-HSS

Reconstruct and Verify:

Compute shares of a proof for the deterministic relation: 𝑓 𝑥 =	𝑦"+ 𝑦#

q Correctness
q Succinctness
q Local Soundness
q Public Soundness
q Privacy

Ensuring Privacy

𝜇!

𝜇"

Π"

Π"

𝑥

𝑥!

𝑥"

𝑦!𝐻𝑆𝑆. 𝐸𝑣𝑎𝑙#

𝑆ℎ𝑎𝑟𝑒

𝑦"

𝐻𝑆𝑆. 𝐸𝑣𝑎𝑙*!

𝐻𝑆𝑆. 𝐸𝑣𝑎𝑙#

𝐻𝑆𝑆. 𝐸𝑣𝑎𝑙*!

Computed by
adversarial server

Computed by
honest server

How to predict the output of
honest client in the ideal
world, only based on this

proof share?

Is it safe to reveal this share
when the final computation is

incorrect? YES!!

Distributed Prover Robust Verification
For a fixed computed by the honest server,

→⊠a PPT adversary can only find one such that verifies.

𝜇!

𝜇"

Π"

Π"

𝑥

𝑥!

𝑥"

𝑦!𝐻𝑆𝑆. 𝐸𝑣𝑎𝑙#

𝑆ℎ𝑎𝑟𝑒

𝑦"

𝐻𝑆𝑆. 𝐸𝑣𝑎𝑙*!

𝐻𝑆𝑆. 𝐸𝑣𝑎𝑙#

𝐻𝑆𝑆. 𝐸𝑣𝑎𝑙*!

Simulator can recompute
this to check if it was
honestly generated.

Distributed Prover Robust Verification
For a fixed computed by the honest server,

→⊠a PPT adversary can only find one such that verifies.

𝜇!

𝜇"

Π"

Π"

𝑥

𝑥!

𝑥"

𝑦!𝐻𝑆𝑆. 𝐸𝑣𝑎𝑙#

𝑆ℎ𝑎𝑟𝑒

𝑦"

𝐻𝑆𝑆. 𝐸𝑣𝑎𝑙*!

𝐻𝑆𝑆. 𝐸𝑣𝑎𝑙#

𝐻𝑆𝑆. 𝐸𝑣𝑎𝑙*!

Computed by
adversarial server

Computed by
honest server

Simulator can recompute this
to check if it was honestly
generated and decide the

output accordingly.

q Correctness
q Succinctness
q Local Soundness
q Public Soundness
q Privacy

Adding Public Soundness

Compute two proofs:

Local Proof: For the deterministic relation: ℛ+,-.+ = 𝑓, 𝑥, 	𝑦! ,	𝑦" 	|	𝑠𝑡. 𝑓 𝑥 = 	𝑦!+ 𝑦"

Public Proof: For the relation: ℛ$() = 	𝑓,	𝑥$() , 𝑦!,	𝑦" 	|	∃	𝑥$%&' , 𝑠𝑡. 𝑓 	𝑥$%&' ,	𝑥$() = 	𝑦!+ 𝑦"

q Correctness
q Succinctness
q Local Soundness
q Public Soundness
q Privacy

Summary of Construction

𝜇!

𝜇"

Π"

Π"

𝑥

𝑥!

𝑥"

𝑦!𝐻𝑆𝑆. 𝐸𝑣𝑎𝑙#

𝑆ℎ𝑎𝑟𝑒

𝑦"

𝐻𝑆𝑆. 𝐸𝑣𝑎𝑙*!

𝐻𝑆𝑆. 𝐸𝑣𝑎𝑙#

𝐻𝑆𝑆. 𝐸𝑣𝑎𝑙/*!

𝐻𝑆𝑆. 𝐸𝑣𝑎𝑙/*! J	𝜇! KΠ!

𝐻𝑆𝑆. 𝐸𝑣𝑎𝑙/*! J	𝜇" KΠ"

Examples of Splittable zkSNARKs

Our zero-knowledge version of
[Waters-Wu 22] BARGs are splittable

[Groth16] zkSNARKs are splittable

[Groth16] zkSNARKs are Splittable

Extended witness
generation

Step 1

Additional constant depth
field operations Combining with CRS

Step 2 Step 3 Proof

𝐴, 𝐵, 𝐶

[Groth16] zkSNARKs are Splittable

Extended witness
generation

Step 1

Additional constant depth
field operations Combining with CRS

Step 2 Step 3 Proof

Low-depth non-cryptographic operations
𝐴 = N

&∈[2]

𝑄&4"

𝐴, 𝐵, 𝐶

Output of Step 2

CRS terms

Linearly distributable
 cryptographic operations

Applications
(Private and Verifiable Delegation of Computation)

Delegating Non-Cryptographic Functions

Our solution: Non-interactive and black box

Output can be
reconstructed and
verified by anyone

Publicly
verifiable

output

FHE based approach [GGW24,ACGSV23]:
requires client to intervene

Delegating zkSNARK Computation

Client wants to outsource the computation of a (splittable) zkSNARK for the relation:

𝑥

𝑥!

𝑥"

𝑦!𝐸𝑣𝑎𝑙#

𝑆ℎ𝑎𝑟𝑒

𝐸𝑣𝑎𝑙# 𝑦"

ℛ	 = 𝑓,	𝑥 = 𝑥$() , 1 	|	∃	𝑥$%&'= 𝑤, 𝑠𝑡. 𝑓 𝑥, 𝑤 = 1

Use our ve-HSS for computing function 𝑓	

Correspond to shares of
the desired zkSNARK

Non-interactive and black box solution

Delegating zkSNARK Computation

Client wants to outsource the computation of a (splittable) zkSNARK for the relation:

𝑥

𝑥!

𝑥"

𝑦!𝐸𝑣𝑎𝑙#

𝑆ℎ𝑎𝑟𝑒

𝐸𝑣𝑎𝑙# 𝑦"

ℛ	 = 𝑓,	𝑥 = 𝑥$() , 1 	|	∃	𝑥$%&'= 𝑤, 𝑠𝑡. 𝑓 𝑥, 𝑤 = 1

Use our ve-HSS for computing function 𝑓	

Correspond to shares of
the desired zkSNARK

Non-interactive and black box solution

Comparison with Prior Work

MPC based approaches
[GGJ+23, CLMZ23, LZW+24]

FHE based approach
[GGW24]

• Requires client to intervene
• Final proof is different from

the original scheme

• Many rounds of interaction

Summary

A new notion of HSS with verifiable evaluation

A general framework for adding verifiability to semi-honest HSS using splittable SNARGs

Instantiations of splittable SNARGs

Applications to private and verifiable delegation of non-cryptographic and zkSNARK computations

Extension to multi-client HSS with verifiable evaluation

Open Questions

A framework using HSS schemes that have non-negligible correctness error

Other examples and applications of splittable SNARGs

Distributed prover robust verification using MACs

Thank you!

