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zk-SNARKs: Zero-Knowledge Succinct 
Non-Interactive Arguments of Knowledge 
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Prover Verifier

𝜋

Verifier should not learn the 
secret witness

Zero knowledge

Cheating prover cannot give 
accepting proof if 𝑥 ∉ 𝐿

Soundness

Anyone can verify

Time to verify is smaller than time 
to compute

Succinctness



zk-SNARKs: Numerous Applications

Anonymous Credentials 
[Chaum82]

Privacy Respecting 
Cryptocurrency [BCGGMTV14]

Private Smart Contracts 
[BCGMMW20]

Proving existence of 
bugs in code [HK20]

Verifying authenticity of 
images in media [NT16]

Verifiable Inference of 
Machine Learning [LKKO20]



zk-SNARKs: Lots of Work on Improving Efficiency

Time to generate of zk-SNARKs >>> Time to check the relation directly 



Gru’s Quest to be a Supervillain

I am a great villain and deserve to be part of Vicious 6

Since Gru has a very long list of despicable achievements, 
computing a zk-SNARK will take a really long time

Prove this in 
zero-knowledge

Gru: Rising Villain Vicious 6: A prolific set of Supervillains



Can Gru Delegate zk-SNARK Computation?

Details of his despicable achievements

zk-SNARK attesting 
to his achievements

Gru: Rising Villain Vicious 6: A prolific set of Supervillains

𝜋

𝜋

Violates Privacy!!: Requires leaking the entire 
witness to AWS



Can Gru Delegate zk-SNARK Computation?

Details of his despicable achievements

Gru: Rising Villain Vicious 6: A prolific set of Supervillains

𝜋

𝜋

Each minion only gets a share of the 
witness

Delegate to a group of minions who 
run an MPC to compute the zk-SNARK
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Collaborative zk-SNARKs [OB22] 

Efficient MPC for computing zk-SNARKs

Each party does work proportional to a single prover 

[WZCAS18] leverage parallelism to distribute work across machines 
in a compute cluster to get faster proof generation

Privacy

Wasteful

Not Privacy Preserving



Our Goal

Better utilization of resources of the parties in collaborative zk-SNARKs, for 
faster proof generation, in a privacy-preserving manner



Our Results: zkSaaS 

For privacy preserving delegation of zk-SNARK computation. 
Each servers is expected to run for a shorter duration than a single local prover.

Design zkSaaS for Groth16 [Gro16], Marlin [CHMMVW20] and Plonk [GWC19].

Implement a prototype of zkSaaS for Groth16, Plonk and get
 ≈ 	22×	speed-up when run with 128 parties for 2!" − 2!# constraints

Framework

Design

Implementation



zkSaaS Framework
Typical zk-SNARKs

Step 1: Computing Extended Witness

Step 2: Generating Proof 
 (Cryptographic Operations + Field Operations) 

Secret Shares “Extended Witness” 

𝜋

Pre-Processing: each server gets a part 
of the correlated randomness 

Client computes Step 1 Servers collectively compute Step 2

Cryptographic Operations get equally 
divided amongst all servers

Field Operations get equally divided 
amongst small servers. King does work 

linear in the number of field operations.
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Applicability of zkSaaS

To aid users with small devices

For extremely large computations



Designing zkSaaS 



General Template [OB22]

Identify basic building blocks in 
zk-SNARKs

Design custom MPC protocols for each 
building block with the required efficiency

Combine them to get a zkSaaS for the corresponding zk-SNARK

+



Building Blocks in Groth16, Marlin, Plonk

Multi-Scalar Multiplications (MSM) 

Fast Fourier Transform (FFT)

Partial Products

Polynomial Multiplication and Division

𝐹 𝑔", 𝛼", … , 𝑔$, 𝛼$ = 1
%∈[$]

𝑔%)! 𝐹 𝑥", … , 𝑥$ = 1
%∈[*]

𝑥%
*∈[$]

For converting between 
coefficient and evaluation 

representation of polynomials

A combination of addition, 
multiplication and FFT 

operations



Packed Secret Sharing (PSS) [FY92] 
𝑣

𝑠+𝑠!𝑠" 𝑠#𝑠,

Secret value

shares

Regular Secret Sharing

1 Value → 𝑛 shares

Corruption threshold: 𝑡 < 4
5
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𝑣! 𝑣+ 𝑣,Secret value
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Regular Secret Sharing Packed Secret Sharing

1 Value → 𝑛 shares 𝑂(𝑛) Values → 𝑛 shares

Corruption threshold: 𝑡 < 4
5 Corruption threshold 𝑡 < 𝑛(65−

6
7)



Experimental Results



zkSaaS for Groth16: Setup 

Local Prover zkSaaS Servers

1vCPU and 4 GB RAM 96vCPU and 
128 GB RAM

1vCPU and 2 GB RAM each

N1 GCP Instances
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zkSaaS for Groth16 No. of Servers = 128
Packing constant = 32

No. of corrupt servers =31

Weak servers can handle 16 times more constraints than 
consumer machine before running out of memory

Memory Exhaustion

We get ≈ 22× speed-up over consumer machine

Running Time

Why not 32 times?

1. FFT doesn’t achieve equal division of work
2. Sub-optimal use of Pippenger’s algorithm for MSMs



zkSaaS for Groth16

No. of Constraints = 219

Packing constant = n/4
No. of corrupt servers = n/4
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