
Zero-Knowledge SNARKs as a Service

Sanjam Garg Aarushi Goel Abhishek Jain Guru Vamsi Policharla Sruthi Sekar

zkSaaS

USENIX Security 2023

zk-SNARKs: Zero-Knowledge Succinct
Non-Interactive Arguments of Knowledge

𝐿 ∈ 𝑁𝑃

𝑥 ∈ 𝐿

Okay, I
believe you

Prover Verifier

𝜋

zk-SNARKs: Zero-Knowledge Succinct
Non-Interactive Arguments of Knowledge

𝐿 ∈ 𝑁𝑃

𝑥 ∈ 𝐿

Okay, I
believe you

Prover Verifier

𝜋

Verifier should not learn the
secret witness

Zero knowledge

Cheating prover cannot give
accepting proof if 𝑥 ∉ 𝐿

Soundness

Anyone can verify

Time to verify is smaller than time
to compute

Succinctness

zk-SNARKs: Numerous Applications

Anonymous Credentials
[Chaum82]

Privacy Respecting
Cryptocurrency [BCGGMTV14]

Private Smart Contracts
[BCGMMW20]

Proving existence of
bugs in code [HK20]

Verifying authenticity of
images in media [NT16]

Verifiable Inference of
Machine Learning [LKKO20]

zk-SNARKs: Lots of Work on Improving Efficiency

Time to generate of zk-SNARKs >>> Time to check the relation directly

Gru’s Quest to be a Supervillain

I am a great villain and deserve to be part of Vicious 6

Since Gru has a very long list of despicable achievements,
computing a zk-SNARK will take a really long time

Prove this in
zero-knowledge

Gru: Rising Villain Vicious 6: A prolific set of Supervillains

Can Gru Delegate zk-SNARK Computation?

Details of his despicable achievements

zk-SNARK attesting
to his achievements

Gru: Rising Villain Vicious 6: A prolific set of Supervillains

𝜋

𝜋

Violates Privacy!!: Requires leaking the entire
witness to AWS

Can Gru Delegate zk-SNARK Computation?

Details of his despicable achievements

Gru: Rising Villain Vicious 6: A prolific set of Supervillains

𝜋

𝜋

Each minion only gets a share of the
witness

Delegate to a group of minions who
run an MPC to compute the zk-SNARK

Can Gru Delegate zk-SNARK Computation?

Details of his despicable achievements

Gru: Rising Villain Vicious 6: A prolific set of Supervillains

𝜋

𝜋

Each minion only gets a share of the
witness

Delegate to a group of minions who
run an MPC to compute the zk-SNARK

Collaborative zk-SNARKs [OB22]

Collaborative zk-SNARKs [OB22]

Efficient MPC for computing zk-SNARKs

Each party does work proportional to a single prover

[WZCAS18] leverage parallelism to distribute work across machines
in a compute cluster to get faster proof generation

Privacy

Wasteful

Not Privacy Preserving

Our Goal

Better utilization of resources of the parties in collaborative zk-SNARKs, for
faster proof generation, in a privacy-preserving manner

Our Results: zkSaaS

For privacy preserving delegation of zk-SNARK computation.
Each servers is expected to run for a shorter duration than a single local prover.

Design zkSaaS for Groth16 [Gro16], Marlin [CHMMVW20] and Plonk [GWC19].

Implement a prototype of zkSaaS for Groth16, Plonk and get
 ≈ 	22×	speed-up when run with 128 parties for 2!" − 2!# constraints

Framework

Design

Implementation

zkSaaS Framework
Typical zk-SNARKs

Step 1: Computing Extended Witness

Step 2: Generating Proof
 (Cryptographic Operations + Field Operations)

Secret Shares “Extended Witness”

𝜋

Pre-Processing: each server gets a part
of the correlated randomness

Client computes Step 1 Servers collectively compute Step 2

Cryptographic Operations get equally
divided amongst all servers

Field Operations get equally divided
amongst small servers. King does work

linear in the number of field operations.

zkSaaS Framework
Typical zk-SNARKs

Step 1: Computing Extended Witness

Step 2: Generating Proof
 (Cryptographic Operations + Field Operations)

Secret Shares “Extended Witness”

𝜋

Pre-Processing: each server gets a part
of the correlated randomness

Client computes Step 1 Servers collectively compute Step 2

Cryptographic Operations get equally
divided amongst all servers

Field Operations get equally divided
amongst small servers. King does work

linear in the number of field operations.

Applicability of zkSaaS

To aid users with small devices

For extremely large computations

Designing zkSaaS

General Template [OB22]

Identify basic building blocks in
zk-SNARKs

Design custom MPC protocols for each
building block with the required efficiency

Combine them to get a zkSaaS for the corresponding zk-SNARK

+

Building Blocks in Groth16, Marlin, Plonk

Multi-Scalar Multiplications (MSM)

Fast Fourier Transform (FFT)

Partial Products

Polynomial Multiplication and Division

𝐹 𝑔", 𝛼", … , 𝑔$, 𝛼$ = 1
%∈[$]

𝑔%)! 𝐹 𝑥", … , 𝑥$ = 1
%∈[*]

𝑥%
*∈[$]

For converting between
coefficient and evaluation

representation of polynomials

A combination of addition,
multiplication and FFT

operations

Packed Secret Sharing (PSS) [FY92]
𝑣

𝑠+𝑠!𝑠" 𝑠#𝑠,

Secret value

shares

Regular Secret Sharing

1 Value → 𝑛 shares

Corruption threshold: 𝑡 < 4
5

Packed Secret Sharing (PSS) [FY92]
𝑣

𝑠+𝑠!𝑠" 𝑠#𝑠,

𝑣"

𝑠+𝑠!𝑠" 𝑠#𝑠,

𝑣! 𝑣+ 𝑣,Secret value

shares

Secret vector

shares

Regular Secret Sharing Packed Secret Sharing

1 Value → 𝑛 shares

Corruption threshold: 𝑡 < 4
5

𝑂(𝑛) Values → 𝑛 shares

Packed Secret Sharing (PSS) [FY92]
𝑣

𝑠+𝑠!𝑠" 𝑠#𝑠,

𝑣"

𝑠+𝑠!𝑠" 𝑠#𝑠,

𝑣! 𝑣+ 𝑣,Secret value

shares

Secret vector

shares

Regular Secret Sharing Packed Secret Sharing

1 Value → 𝑛 shares 𝑂(𝑛) Values → 𝑛 shares

Corruption threshold: 𝑡 < 4
5 Corruption threshold 𝑡 < 𝑛(65−

6
7)

Experimental Results

zkSaaS for Groth16: Setup

Local Prover zkSaaS Servers

1vCPU and 4 GB RAM 96vCPU and
128 GB RAM

1vCPU and 2 GB RAM each

N1 GCP Instances

�� � �����������������	��
�������������������������	
�����������

��
��
��
�

��
���
���
���
��

���
���

��
�
��
��
��

����������	�
����
���
���������
�

zkSaaS for Groth16 No. of Servers = 128
Packing constant = 32

No. of corrupt servers =31

Weak servers can handle 16 times more constraints than
consumer machine before running out of memory

Memory Exhaustion

We get ≈ 22× speed-up over consumer machine

Running Time

Why not 32 times?

1. FFT doesn’t achieve equal division of work
2. Sub-optimal use of Pippenger’s algorithm for MSMs

zkSaaS for Groth16

No. of Constraints = 219

Packing constant = n/4
No. of corrupt servers = n/4

�� �� �	 �
 ��
Pa ties ���

2
0

2
1

2
2

2
3

2
4

2
5

S
pe

ed
up

G oth16-64.0Mbps
G oth16-256.0Mbps
G oth16-4Gbps
Single P ove Baseline
Pe fect Division

Thanks!
aarushi.goel@ntt-research.com

https://aarushigoel.github.io/

Paper Code

